Saltar al contenido principal

Legit.Health Achieves ISO 13485 Certification: A Milestone in Quality and Safety

· 4 min de lectura
Andy Anguilar
CEO at Legit.Health
Alfonso Medela
CAIO at Legit.Health
Antonio Martorell
Antonio Martorell
Dermatologists and Medical Lead at Legit.Health
Taig Mac Carthy
Co-founder at Legit.Health

We are thrilled to announce that Legit.Health has officially earned the ISO 13485 certification, marking a significant milestone in our journey toward excellence in the medical devices industry. This achievement is not just a testament to our commitment to quality and safety but also a reflection of our dedication to adhering to the highest international standards.

AIHS4, un avance revolucionario en la puntuación de gravedad de la hidradenitis supurativa

· 14 min de lectura
Taig Mac Carthy
Co-founder at Legit.Health
Antonio Martorell
Antonio Martorell
Dermatologists and Medical Lead at Legit.Health
Ruben Garcia Castro
Ruben Garcia Castro
Dermatologist
Alfonso Medela
CAIO at Legit.Health

Introducción

El futuro de la medición de la hidradenitis supurativa está aquí gracias al revolucionario AIHS4 (Sistema Automático de Puntuación de la Gravedad de la Hidradenitis Supurativa Internacional) de Legit.Health. Los investigadores han desarrollado una herramienta que procesa imágenes tomadas con cualquier camara y las analiza automáticamente usando los mismos criterios que el IHS4.

Nadie duda que las medidas de resultados objetivas, fiables y precisas son clave para la práctica de la medicina basada en la evidencia. En el caso de la hidradenitis supurativa, el IHS4 es la herramienta de medición más moderna y fiable, ampliamente recomendada para su uso en ensayos clínicos y práctica diaria. Por eso Legit.Health lo ha elegido como base para su nueva y revolucionaria tecnología.

El AIHS4 ha sido mencionado en publicaciones científicas recientes, como el siguiente artículo del Consejo Nacional de Investigaciones de Italia y las Universidades de Palermo y Messina:

(...) para superar el IHS4, que requiere mucho tiempo y está sujeto a variabilidad, se introduce el AIHS4, utilizando un modelo aprendizaje profundo, Legit.Health-IHS4net, para la detección de lesiones (...). Esta evidencia resalta la utilidad de la IA en la dermatología basada en evidencia, ofreciendo una herramienta para empoderar a los dermatólogos en la práctica diaria y en ensayos clínicos.

Li Pomi F, Papa V, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Inteligencia Artificial: Una instantánea de su aplicación en enfermedades crónicas inflamatorias y autoinmunes de la piel. Life. 2024; 14(4):516. https://doi.org/10.3390/life14040516

Los orígenes del IHS4

Antes del desarrollo del IHS4, en 2017, otros sistemas como la escala de Hurley o la puntuación modificada de Sartorius eran ampliamente utilizados por los médicos en el manejo de la HS. Aunque estos sistemas anteriores carecían de granularidad y precisión, la ausencia de un método alternativo hizo que fueran utilizados tanto en la práctica clínica como en los ensayos de fármacos.

Sin embargo, [la clasificación de Hurley] es estática y no fue diseñada como una puntuación dinámica para una evaluación precisa de la extensión de la inflamación en cada etapa.

C.C. Zouboulis, T. Tzellos, A. Kyrgidis et all, on behalf of the European Hidradenitis Suppurativa Foundation Investigator Group. Development and validation of the International Hidradenitis Suppurativa Severity Score System (IHS4), a novel dynamic scoring system to assess HS severity

El IHS4 se desarrolló teniendo en cuenta estos problemas, y el panel de expertos que lo elaboró se centró en alcanzar una forma más objetiva, precisa y fiable de medir la gravedad de la hidradenitis supurativa.

La fórmula desarrollada por el panel de expertos añadió los tres síntomas más comunes de la hidradenitis supurativa y los multiplicó por un factor relevante para cuán indicativos eran de la gravedad de la enfermedad. De esta manera, el número de nódulos se multiplica por 1, el número de abscesos por 2, y el número de túneles drenantes (fístulas/sinus) por 4.

La combinación de estos factores da lugar a la puntuación IHS4. Dicha puntuación se compara luego con una pequeña tabla de referencia que asigna un significado interpretable a cada intervalo de puntuaciones.

  • Menos de 3 puntos: Leve
  • Entre 2 y 10 puntos: Moderado
  • Más de 11 puntos: Severo

Adaptado de "Development and validation of the International Hidradenitis Suppurativa Severity Score System (IHS4), a novel dynamic scoring system to assess HS severity". C.C. Zouboulis, T. Tzellos, A. Kyrgidis et all, on behalf of the European Hidradenitis Suppurativa Foundation Investigator Group.

Limitaciones del IHS4 en papel y lápiz

Una clasificación precisa de la gravedad de la enfermedad se basa en la evaluación subjetiva de la manifestación clínica por parte de un médico, por lo que la experiencia del médico juega un papel significativo.

Katarzyna Włodarek, Aleksandra Stefaniak, Łukasz Matusiak, Jacek C. Szepietowski. Could Residents Adequately Assess the Severity of Hidradenitis Suppurativa? Interrater and intrarater Reliability Assessment of Major Scoring Systems

A pesar de sus contribuciones para resolver los problemas de sus predecesores, el IHS4 presenta los mismos problemas que muchos otros sistemas de puntuación: un alto grado de subjetividad derivado de la naturaleza visual de la prueba y un proceso que muchos médicos informan como demasiado lento y tedioso.

Do you want to see the clinical AI technology in action?

Más allá de las calculadoras digitales

El caso del IHS4 es muy especial. A diferencia de la mayoría de los sistemas de puntuación dermatológica para otras enfermedades, como PASI o SCORAD, el desarrollo relativamente nuevo de este método ha permitido a la comunidad médica omitir un paso común pero anticuado en el avance del estado del arte para este campo.

Este paso, que consiste en desarrollar una calculadora informática, intenta abordar uno de los principales problemas con cualquier sistema de puntuación: el tiempo necesario para aplicarlo correctamente. Lo hacen convirtiendo los muchos cálculos que los médicos suelen necesitar hacer en un proceso automático.

Esto aún no ha ocurrido en el diagnóstico de la hidradenitis supurativa, ya que el IHS4 es un sistema de puntuación relativamente joven y no ha habido suficiente tiempo para que emerja una de estas calculadoras.

En lugar de eso, con AIHS4, estamos saltando directamente al futuro de la dermatología abordando tanto los problemas de tiempo como de objetividad dentro del método tradicional.

¿Cómo sabemos si un sistema de puntuación es bueno?

Cuando se trata de evaluaciones dermatológicas, la efectividad de un sistema de puntuación es primordial. Pero, ¿qué es exactamente lo que hace que un sistema de puntuación sea fiable y útil? A través del consenso científico, se han identificado varios factores clave que contribuyen a la robustez de estas escalas. Vamos a profundizar en los elementos cruciales:

  • Facilidad de uso: Este factor considera si el sistema puede aplicarse sin esfuerzo dentro de las limitaciones de tiempo y recursos financieros. Que un sistema sea fácil de usar es crucial para su adopción generalizada en entornos clínicos.
  • Sensibilidad al cambio: Un sistema de puntuación efectivo debe ser capaz de detectar cambios clínicamente significativos a lo largo del tiempo. Esta sensibilidad asegura que cualquier progreso o deterioro en la condición de un paciente se captura con precisión.
  • Fiabilidad interobservador: Esto se refiere a la consistencia de los resultados cuando diferentes observadores utilizan el sistema de puntuación. Una alta fiabilidad interobservador significa que diferentes dermatólogos llegarán a conclusiones similares, mejorando la credibilidad del sistema.
  • Variabilidad intraobservador: Esto analiza la consistencia de los resultados cuando el mismo observador utiliza el sistema de puntuación varias veces. Una baja variabilidad intraobservador indica que el sistema proporciona resultados similares todas las veces que un mismo dermatólogo evalúe un mismo caso.
  • Interpretabilidad: Un sistema de puntuación práctico debería proporcionar interpretaciones cualitativas significativas de sus puntuaciones, como categorizar la gravedad de una condición como leve, moderada o severa.

Estos criterios no solo aseguran la efectividad del sistema de puntuación sino también su aplicabilidad y fiabilidad en diversos escenarios clínicos.

Adaptado de "Methods and definitions to rate the quality of outcome measures". Schmitt, J., Langan, S., Deckert, S., Svensson, A., von Kobyletzki, L., Thomas, K., & Spuls, P. (2013). Assessment of clinical signs of atopic dermatitis: A systematic review and recommendation. Journal of Allergy and Clinical Immunology, 132(6), 1337--1347. doi:10.1016/j.jaci.2013.07.008.

7 maneras en que el AIHS4 es mejor

La herramienta revolucionaria desarrollada por Legit.Health permite a los dermatólogos practicar medicina basada en la evidencia mientras acelera el proceso de reporte de la patología y aumenta la autonomía y el control del paciente.

Publicación de la versión automática del IHS4 en la revista Skin Research and Technology.

Esta aplicación utiliza algoritmos de aprendizaje profundo para liberar a los médicos del tedioso cálculo manual de sistemas de puntuación, al clasificar automáticamente las lesiones analizando imágenes y PROMs. En otras palabras: la herramienta rellena automáticamente la mayoría de los sistemas de puntuación dermatológicos, tales como PASI, SCORAD, UAS, GAGS, y por supuesto, IHS4.

Esto significa que la nueva versión de este sistema de puntuación extrae datos de manera precisa y consistente, tanto durante evaluaciones rutinarias como en investigación clínica. La mejora se puede ver en la siguiente tabla, que compara las métricas de rendimiento de la forma más común de utilizar los sistemas de puntuación:

Papel y lápizDigitalAutomático (IA)
Auto-supervisión--Realiza diagnóstico
Facilidad de uso≈ 600 segundos≈ 420 segundos≈ 23 segundos
Sensibilidad al cambio0 a 40 a 40 a 100
Variabilidad interobservadorMedia (20%)Media (20%)La más baja (8%)
Variabilidad intraobservadorAltaAltaCero

Tabla 1: Comparación entre diferentes métodos de puntuación de la severidad de una enfermedad. El método automático impulsado por inteligencia artificial presenta un mejor rendimiento en la mayoría de los indicadores.

Gracias a los algoritmos de aprendizaje profundo, Legit.Health libera a los médicos de la tediosa tarea de calcular manualmente los sistemas de puntuación y permite la práctica de una dermatología basada en evidencia más objetiva. Además, al utilizar algoritmos para medir la sequedad, la liquenificación, el eritema, el exudado, el edema y muchos más signos, la herramienta puede calcular signos visuales de manera más fiable y consistente.

1. AIHS4 mejora la tasa de diagnóstico correcto

El algoritmo creado por Legit.Health no solo se limita a medir la gravedad de la afección como lo hace el IHS4, sino que también ha sido entrenado utilizando la entrada de los mejores dermatólogos para poder distinguir entre cientos de enfermedades, incluyendo la mayoría de las enfermedades que producen abscesos.

Este seguimiento telemático evitó ausencias escolares en pacientes pediátricos, ausencias laborales en adultos, y permitió el seguimiento de pacientes en cuarentena debido a COVID-19 o con enfermedades que dificultan el viaje. Tanto los pacientes como sus dermatólogos mostraron un alto grado de satisfacción con el uso de la aplicación, con el 100% de los pacientes interesados en continuar utilizando la herramienta.

Dra. Marta Andreu, Hospital de Torrejón

Así, AIHS4 asiste al médico en el proceso de evaluación de la enfermedad, no solo haciéndolo más rápido proporcionando información relevante, sino mejorando la tasa de diagnósticos correctos en un 23% en el caso de los médicos de primaria.

Do you want to see the clinical AI technology in action?

2. Más fácil de usar y más rápido que su contraparte analógica

Una de las principales ventajas del AIHS4 sobre los métodos tradicionales es su velocidad. Donde un médico experimentado podría necesitar seis o siete minutos para completar y calcular el IHS4, el algoritmo de Legit.Health solo necesita 23 segundos para obtener la puntuación final.

La evaluación de la gravedad de la enfermedad a menudo es confusa, especialmente para los dermatólogos jóvenes e inexpertos.

Katarzyna Włodarek, Aleksandra Stefaniak, Łukasz Matusiak, Jacek C. Szepietowski. Could Residents Adequately Assess the Severity of Hidradenitis Suppurativa? Interrater and intrarater Reliability Assessment of Major Scoring Systems

Esto supone una ventaja increíble para sus usuarios, tanto desde una perspectiva de gestión del tiempo como clínica. La cruda realidad es que muchos médicos no se toman el tiempo para rellenar correctamente ningún sistema de puntuación, y confian en una estimación intuitiva para determinar la gravedad de la afección. Esto ocurre porque los sistemas de puntuación tradicionales son demasiado tediosos y lentos para una aplicación práctica en el día a día.

Gracias al AIHS4 eso ya no debería ser una preocupación. Esta herramienta rápida y fácil de usar pone la usabilidad en el centro de su diseño y se esfuerza por facilitar la práctica de la medicina basada en la evidencia.

3. AIHS4 puede detectar pequeños cambios en la evolución de la patología

La herramienta de Legit.Health analiza las patologías usando un sistema de puntuación validado que tiene tanto el MID más bajo (Diferencia Importante Mínima) como la sensibilidad al LDC más baja (Cambio Detectable Más Bajo), lo que significa que el algoritmo analiza cada imagen con más precisión y atención al detalle que cualquier observador humano.

Además, tiene una mayor validez y fiabilidad mientras mantiene propiedades clinimétricas comparables, gracias al funcionamiento intrínseco de los algoritmos de visión por computadora.

Dada la complejidad de determinar la gravedad de una enfermedad como la hidradenitis supurativa, el AIHS4 proporciona el tipo de granularidad y precisión necesarias para proporcionar al médico toda la información necesaria para un diagnóstico exitoso.

4. Proporciona una reducción en la variabilidad interobservador

Los resultados experimentales muestran que el AIHS4 supera significativamente los métodos de referencia cuando se trata de variabilidad interobservador, ya que el algoritmo logra un porcentaje absoluto medio de error de solo el 8%, mucho menor que el 20% habitual que se observa en la aplicación clásica del IHS4.

Estimar es adivinar, contar es medir

Alfonso Medela, CAIO

Además, la fiabilidad de este método solo aumentará a medida que pase el tiempo y la tecnología mejore, haciendo posible que la evaluación automática de la gravedad usando algoritmos sea aún más precisa en el futuro.

Do you want to see the clinical AI technology in action?

5. AIHS4 reduce la variabilidad intraobservador a cero

Debido a su naturaleza algorítmica, ALEGI elimina completamente la variabilidad intraobservador, ya que la red neuronal es perfectamente estable en sus parámetros. En otras palabras, la aplicación tiene una memoria perfecta de cada imagen y cada diagnóstico con la que ha sido entrenada, y por tanto sus resultados son fiables a lo largo del tiempo.

Legit.Health permite al médico no depender de su memoria al evaluar la gravedad de la afección y centrarse en el análisis de los datos objetivos almacenados en la aplicación reduce considerablemente el riesgo de recordar mal, proporcionando una forma más objetiva, precisa y precisa de rastrear el desarrollo de la enfermedad.

Esto se vuelve especialmente importante en ensayos clínicos, donde reducir este tipo de variabilidad es clave para recopilar los datos precisos requeridos en este tipo de estudio.

6. Los datos son más accesibles y fáciles de leer

La interfaz de Legit.Health proporciona acceso a toda la información relevante sobre el paciente de manera fácil de leer.

Cada dato derivado del AIHS4 se muestra claramente en la pantalla, mostrando la gravedad de la afección y los diferentes factores considerados por el algoritmo al analizar la imagen y sus puntuaciones.

Por otro lado, los rastros de papel fáciles de perder son cosa del pasado, especialmente cuando puedes tener toda la información del paciente, resultados de pruebas y fotos en una base de datos digital que se respalda constantemente.

Medida de gravedad de hidradenitis
supurativa

IHS4 automático y para Hidradenitis Supurativa con Legit.Health

7. Una forma fácil de seguir el progreso de un tratamiento

Dado que la hidradenitis supurativa es una enfermedad crónica, el seguimiento post-diagnóstico es crucial para el buen desarrollo del tratamiento.

Legit.Health mejora la comunicación entre médico y paciente, permitiendo a los segundos convertirse en una parte más activa de su tratamiento. La aplicación logra esto al proporcionar al usuario una forma fácil y fiable de enviar datos precisos al médico.

Además, la aplicación muestra los datos en un gráfico fácil de leer que muestra el progreso de la afección, haciendo que responder a la pregunta usualmente difícil "¿Me estoy mejorando, Doctor?" sea pan comido.

Do you want to see the clinical AI technology in action?

Potenciando la Medicina Basada en la Evidencia

En la práctica de la medicina basada en la evidencia, las medidas de resultado objetivas, fiables y precisas son cruciales. Tradicionalmente, la evaluación de la gravedad de HS ha sido subjetiva, basándose únicamente en el juicio clínico. Sin embargo, el AIHS4 desarrollado por Legit.Health introduce un cambio transformador al proporcionar un enfoque automatizado y estandarizado para la puntuación de gravedad de HS.

Al utilizar los mismos criterios que el IHS4, que es muy considerado y recomendado para su uso en ensayos clínicos, Legit.Health asegura que los profesionales tengan acceso a una herramienta de medición moderna y fiable. Este avance empodera a los profesionales de la salud para tomar decisiones informadas, seguir la progresión de la enfermedad con precisión y evaluar la eficacia del tratamiento con mayor confianza.

Implementación del Value-Based Healthcare

La atención médica basada en valor tiene como objetivo optimizar los resultados de los pacientes mientras maximiza el valor de los recursos sanitarios. Al ofrecer un sistema automatizado de puntuación de gravedad de HS, Legit.Health apoya la implementación de la Value-Based Healthcare en el manejo de HS, a través de las siguientes características:

  • Estandarización y consistencia: El AIHS4 asegura una evaluación estandarizada y consistente en diversos entornos de atención médica. Al eliminar la variabilidad subjetiva, los profesionales pueden establecer un lenguaje unificado para la gravedad de HS, facilitando una comunicación efectiva y mejorando la planificación del tratamiento.
  • Eficiencia y ahorro de tiempo: El análisis automatizado de imágenes de teléfonos inteligentes reduce significativamente el tiempo y esfuerzo requeridos para la evaluación de la gravedad de HS. Este proceso optimizado permite a los profesionales concentrarse en proporcionar intervenciones oportunas, mejorar la atención al paciente y optimizar la asignación de recursos.
  • Atención centrada en el paciente: Al proporcionar puntuaciones de gravedad de HS precisas y objetivas, el AIHS4 de Legit.Health contribuye a la atención centrada en el paciente. La documentación clara de la progresión de la enfermedad ayuda a los clínicos a involucrar a los pacientes en la toma de decisiones compartida, personalizar planes de tratamiento y establecer objetivos realistas, mejorando en última instancia la satisfacción y los resultados del paciente.
  • Datos del mundo real e investigación: La herramienta AIHS4 genera una gran cantidad de datos estandarizados que pueden utilizarse para investigaciones y estudios clínicos. Este repositorio de datos permite una mayor comprensión de HS, la identificación de nuevos enfoques de tratamiento y la evaluación de intervenciones, fomentando la mejora continua y la innovación en la gestión de HS.

Do you want to see the clinical AI technology in action?

El Sistema Automático de Puntuación de la Gravedad de la Hidradenitis Supurativa Internacional (AIHS4) de Legit.Health representa un gran avance en el campo de HS. Al aprovechar el poder de la IA y adherirse a los criterios establecidos del IHS4, esta tecnología innovadora proporciona a los profesionales una metodología fiable, eficiente y objetiva para evaluar la gravedad de HS. La implementación del AIHS4 no solo potencia la medicina basada en la evidencia sino que también permite la implementación de la atención médica basada en valor, beneficiando tanto a los proveedores de salud como a los pacientes de HS. Con la contribución pionera de Legit.Health, el futuro del cuidado de HS luce más prometedor que nunca.

En conclusión

No podemos mejorar lo que no podemos medir, y gracias al AIHS4 y Legit.Health el futuro del estudio y tratamiento de la hidradenitis supurativa es más prometedor que nunca.

No es difícil ver cómo una tecnología que ayuda a los médicos a gestionar mejor su tiempo y a recopilar datos de manera más fiable y consistente forma parte del futuro del campo dermatológico.

Gracias a Legit.Health, los médicos de todo el mundo pueden mejorar su tasa de diagnósticos correctos en un 23% y hacer que el tratamiento sea más fácil de seguir para el paciente al convertirlos en participantes activos en su propia recuperación mientras permiten al médico practicar medicina basada en la evidencia.

Colabora con nosotros

En Legit.Health estamos trabajando para mejorar aún más la tecnología de AIHS4, esforzándonos por crear herramientas aún mejores. Esto incluye, por ejemplo, mejorar la diferenciación entre tipos de lesiones de HS, o asegurar que la tecnología funciona correctamente en todos los fototipos de piel.

Si quieres colaborar con nosotros, por favor rellena el siguiente formulario y nos pondremos en contacto contigo a la mayor brevedad.

ALEGI: la forma más fiable de medir la gravedad del acné

· 11 min de lectura
Alfonso Medela
CAIO at Legit.Health
Jose Luiz Lopez Estebaranz
Jose Luiz Lopez Estebaranz
Dermatologist MD PhD
Pedro Rodriguez
Pedro Rodriguez
Dermatologist
Taig Mac Carthy
Co-founder at Legit.Health
Alejandro Martin Gorgojo
Alejandro Martin Gorgojo
Dermatovenereologist MD, PhD, MHA

Introducción

La dermatología ha dado un gran salto adelante con la introducción del innovador ALEGI (Índice de Graduación de Lesiones de Acné) de Legit.Health. Los principales investigadores en el campo del deep learning y las redes neuronales se han aliado con dermatólogos expertos para desarrollar esta herramienta algorítmica médicos.

Está ampliamente aceptado que las medidas de resultados objetivas, fiables y precisas son clave para la práctica de la medicina basada en evidencia. A la hora de medir la gravedad del acné, esto implica el uso de escalas o sistemas de puntuación como IGA o GAGS. Por desgracia, en el caso del acné es especialmente difícil y tedioso utilizar los sistemas de puntuación más aceptados, ya que requieren que el médico cuente las lesiones manualmente.

Es por eso que Legit.Health ha desarrollado esta herramienta que cuenta el número y la densidad de las lesiones de acné. Gracias a ella, medir la gravedad del acné es una tarea que requiere solo segundos.

La siguiente captura de pantalla muestra un uso real del sistema de puntuación para el acné. Esto se puede utilizar tanto en móviles como en ordenadores de sobremesa.

La limitación de los sistemas tradicionales de puntuación del acné

Desde que DM. Pillsbury y su equipo desarrollaron el primer sistema de puntuación para el acné en 1956, ha habido una miríada de intentos de encontrar un sistema fácil de usar, fiable y preciso para esta enfermedad. Hoy en día, existen más de 30 métodos, y todos ellos comparten uno de dos problemas subyacentes.

Por un lado, algunos métodos, como GAGS, se centran en la identificación de lesiones. Estos sistemas de puntuación intentan lograr un alto grado de precisión sacrificando la velocidad y la comodidad para el médico. Al final, los médicos tienden a desechar estos métodos por ser demasiado tediosos y que consumen mucho tiempo.

Uno de los métodos comúnmente utilizados es el contaje de lesiones, que consume tiempo pero podría representar un método más preciso.

Hadeel Alsulaimani, Amal Kokandi, Shahad Khawandanh and Rahf Hamad. Severity of Acne Vulgaris: Comparison of Two Assessment Methods. Clinical, Cosmetic and Investigational Dermatology, 2021

Por otro lado, otros métodos como el IGA buscan un sistema de puntuación más utilizable en la práctica diaria. Lamentablemente, logran este resultado sacrificando precisión y confiabilidad, lo que hace que su uso no sea apto para ensayos clínicos.

La evaluación visual directa y la fotografía con flash ordinario representan una evaluación clínica normal. Sin embargo, ambos métodos están comprometidos por la subjetividad del observador.

Roshaslinie Ramli, Aamir Saeed Malik, Ahmad Fadzil Mohamad Hani and Adawiyah Jamil, Acne analysis, grading and computational assessment methods: an overview. Skin Research and Technology 2012; 18: 1--14. Doi: 10.1111/j.1600-0846.2011.00542.x

Sin embargo, todos estamos de acuerdo en que es esencial disponer una herramienta aceptable y fácil de usar para la evaluación del acné que pueda utilizarse tanto en la práctica clínica diaria como en estudios clínicos.

ALEGI: Lo mejor de ambos mundos

El hecho de que los dermatólogos tengan que elegir entre velocidad y precisión en el siglo XXI es deprimente. Elegir es un signo de limitación, y la tecnología debería tender hacía liberarnos de esas limitaciones. Ahí es donde entra ALEGI.

El revolucionario algoritmo de aprendizaje profundo desarrollado por Legit.Health hereda el enfoque de contaje de lesiones de los métodos tradicionales y lo eleva a un nuevo nivel, no solo haciéndolo más objetivo, preciso y confiable, sino también sustancialmente más rápido. Los dermatólogos de la próxima generación finalmente tienen una herramienta que les permite practicar medicina basada en la evidencia.

Usando algoritmos de visión artificial, ALEGI puede contar con mucha precisión la cantidad de lesiones en una imagen tomada con un teléfono. Además, tiene en cuenta la densidad de lesiones al calcular la gravedad, y traduce todo a una medida de resultado fácilmente interpretable, y validada por expertos en el campo.

Do you want to see the clinical AI technology in action?

Los ingredientes de un nuevo sistema de puntuación

Al desarrollar un sistema de puntuación, es vital tener en mente algunos principios de diseño para asegurar que dicho sistema se ajuste a su uso previsto. Después de todo, una herramienta solo es tan buena como su utilidad al completar la tarea para la que fue diseñada.

¿Cómo sabemos si un sistema de puntuación es bueno?

Cuando se trata de evaluaciones dermatológicas, la efectividad de un sistema de puntuación es primordial. Pero, ¿qué es exactamente lo que hace que un sistema de puntuación sea fiable y útil? A través del consenso científico, se han identificado varios factores clave que contribuyen a la robustez de estas escalas. Vamos a profundizar en los elementos cruciales:

  • Facilidad de uso: Este factor considera si el sistema puede aplicarse sin esfuerzo dentro de las limitaciones de tiempo y recursos financieros. Que un sistema sea fácil de usar es crucial para su adopción generalizada en entornos clínicos.
  • Sensibilidad al cambio: Un sistema de puntuación efectivo debe ser capaz de detectar cambios clínicamente significativos a lo largo del tiempo. Esta sensibilidad asegura que cualquier progreso o deterioro en la condición de un paciente se captura con precisión.
  • Fiabilidad interobservador: Esto se refiere a la consistencia de los resultados cuando diferentes observadores utilizan el sistema de puntuación. Una alta fiabilidad interobservador significa que diferentes dermatólogos llegarán a conclusiones similares, mejorando la credibilidad del sistema.
  • Variabilidad intraobservador: Esto analiza la consistencia de los resultados cuando el mismo observador utiliza el sistema de puntuación varias veces. Una baja variabilidad intraobservador indica que el sistema proporciona resultados similares todas las veces que un mismo dermatólogo evalúe un mismo caso.
  • Interpretabilidad: Un sistema de puntuación práctico debería proporcionar interpretaciones cualitativas significativas de sus puntuaciones, como categorizar la gravedad de una condición como leve, moderada o severa.

Estos criterios no solo aseguran la efectividad del sistema de puntuación sino también su aplicabilidad y fiabilidad en diversos escenarios clínicos.

Adaptado de "Methods and definitions to rate the quality of outcome measures". Schmitt, J., Langan, S., Deckert, S., Svensson, A., von Kobyletzki, L., Thomas, K., & Spuls, P. (2013). Assessment of clinical signs of atopic dermatitis: A systematic review and recommendation. Journal of Allergy and Clinical Immunology, 132(6), 1337--1347. doi:10.1016/j.jaci.2013.07.008.

Cuando el equipo de expertos en Legit.Health desarrolló el revolucionario ALEGI, consideraron los muchos criterios que son necesario para que un sistema de puntuación sea excelente en proporcionar medidas de resultado de alta calidad.

Las 7 cualidades más destacadas de ALEGI

La herramienta desarrollada por Legit.Health permite a los dermatólogos practicar medicina basada en la evidencia a la vez que acelera el proceso de informe de la patología y aumenta la autonomía y el control del paciente.

Esta aplicación utiliza algoritmos de aprendizaje profundo para liberar a los médicos del tedioso cálculo manual de las esclas, al clasificar automáticamente las lesiones a partir de imagenes. En otras palabras: la herramienta completa automáticamente la mayoría de los sistemas de puntuación dermatológicos para las enfermedades más comunes como Psoriasis, Dermatitis atópica, Hidradenitis supurativa y, por supuesto, acné.

Esto significa que la nueva versión de este sistema de puntuación extrae datos de manera precisa y consistente, tanto durante evaluaciones rutinarias como en investigación clínica. La mejora se puede ver en la siguiente tabla, que compara las métricas de rendimiento de la forma más común de utilizar los sistemas de puntuación:

Papel y lápizDigitalAutomático (IA)
Auto-supervisión--Realiza diagnóstico
Facilidad de uso≈ 600 segundos≈ 420 segundos≈ 23 segundos
Sensibilidad al cambio0 a 40 a 40 a 100
Variabilidad interobservadorMedia (20%)Media (20%)La más baja (8%)
Variabilidad intraobservadorAltaAltaCero

Tabla 1: Comparación entre diferentes métodos de puntuación de la severidad de una enfermedad. El método automático impulsado por inteligencia artificial presenta un mejor rendimiento en la mayoría de los indicadores.

Gracias a los algoritmos de aprendizaje profundo, Legit.Health libera a los médicos de la tediosa tarea de calcular manualmente los sistemas de puntuación y permite la práctica de una dermatología basada en evidencia más objetiva. Además, al utilizar algoritmos para medir la sequedad, la liquenificación, el eritema, el exudado, el edema y muchos más signos, la herramienta puede calcular signos visuales de manera más fiable y consistente.

1. Más rápido que cualquier otro método existente

La mayoría de los métodos tradicionales de contaje de lesiones pueden tomar varios minutos a un médico experimentado. No solo eso, sino que es un proceso tedioso que la mayoría de los médicos intentan evitar, prefiriendo tomar unos segundos para hacer una estimación aproximada de la gravedad de la enfermedad.

ALEGI rompe completamente este paradigma al automatizar el proceso de conteo de lesiones. En menos de 23 segundos, el médico puede tomar una foto del área afectada, procesarla a través del algoritmo y recibir una medición de la gravedad sin ninguna de la subjetividad implícita en el uso del ojo clínico.

La herramienta fue desarrollada por Legit.Health con el objetivo de poner fin a este tipo de práctica tan profundamente incompatible con la práctica de la medicina basada en evidencia, y para ayudar a los médicos a utilizar la real world evidence para tomar decisiones terapéuticas.

2. Fácil de usar

Uno de los principales problemas que enfrentan los sistemas de salud en todo el mundo es el cuello de botella formado por la falta de una herramienta confiable que ayude a que los médicos de primaria sepan si un paciente debe ser derivado a un especialista.

Esto se debe, entre otras cosas, a que medir la gravedad del acné es dificil. Esto complica la prescripción del tratamiento y limita la capacidad de seguimiento y monitorización su la efectividad. Para solucionar este problema, ALEGI ha sido concebido para ser facil de usar por cualquier profesional sanitario.

Legit.Health contribuye a solucionar este problema, ya que su herramienta es útil tanto para un primer diagnóstico, como para un seguimiento posterior del tratamiento. Es decir, ALEGI ayuda tanto al especialista como al médico general a tomar decisiones informadas.

gravedad del acné con sistema de puntuación

Do you want to see the clinical AI technology in action?

3. Alto grado de granularidad

La herramienta de Legit.Health analiza las patologías utilizando un sistema de puntuación validado que proporciona, por un lado, la MID (Diferencia Mínima Importante) más baja, como la LDC (Cambio Detectable Más Bajo) más sensible. Esto significa que el algoritmo analiza cada imagen con más precisión y atención al detalle que cualquier observador.

Además, ALEGI incorpora una idea nueva y revolucionaria a la evaluación de la gravedad del acné: la densidad de lesiones. En el pasado, los sistemas de puntuación han estado limitados por la capacidad del usuario para contar e identificar correctamente papulas, comedones y pústulas. El algoritmo de Legit.Health tiene en cuenta la tendencia de estas lesiones a agruparse como un factor clave para determinar la gravedad de la enfermedad.

Todo esto permite que ALEGI detecte cambios muy pequeños en el desarrollo de la patología con mayor precisión que cualquier observador humano, proporcionando al médico acceso a información más precisa, objetiva y confiable.

4. Margen de error más pequeño

Gracias a los algoritmos de visión artificial en los que se basa ALEGI, cada lesión se detecta y cuenta individualmente, con un margen de error absoluto medio de +/- 3 lesiones. Esta hazaña, sumada a la capacidad tener en cuenta la densidad de las lesiones en un área determinada, permite que el sistema logre una evaluación de gravedad relevante y clínicamente validada sin necesidad de considerar los diferentes tipos de lesiones.

Esto es relevante porque la literatura muestra que la mayoría de los errores cometidos por los médicos al evaluar la gravedad del acné están relacionados con la identificación errónea de la naturaleza de una lesión, ya que en muchos casos la distinción no está clara ni bien definida dentro de los parámetros de un estudio clínico.

Por eso, disponer de un sistema como el ALEGI, cuya fiabilidad no depende de la capacidad para diferencial una pápula de un comedón, mejor la precisión y disminuye el márgen de error.

Sistema de puntuación de acné ALEGI

5. Cero variabilidad intraobservador

Debido a su naturaleza algorítmica, ALEGI elimina completamente la variabilidad intraobservador, ya que la red neuronal es perfectamente estable en sus parámetros. En otras palabras, la aplicación tiene una memoria perfecta de cada imagen y cada diagnóstico con la que ha sido entrenada, y por tanto sus resultados son fiables a lo largo del tiempo.

Estimar es adivinar, contar es medir

Alfonso Medela, CAIO

Additionally, Legit.Health allows physicians not to rely on their memory when assessing the severity of the condition. Thus, the application significantly reduces the risk of faulty recall and provides a more objective, accurate, and precise way to track the progress of the disease.

However, this becomes especially crucial in clinical trials, where reducing variability is key to gathering accurate data.

6. Proporciona datos accesibles y fáciles de leer

La interfaz de Legit.Health ha sido diseñada para proporcionar acceso a toda la información del paciente de una manera fácil de leer y accesible.

Todos los datos generados por ALEGI se muestran claramente en la pantalla, mostrando la gravedad de la afección y cada factor considerado por el algoritmo al analizar la imagen y su puntuación.

Nos podemos despedir de los datos en papel y su tendencia a perderse, ya que toda la información del paciente, desde los resultados de las pruebas hasta las imágenes relevantes se almacenan en una base de datos digital que se respalda constantemente y es accesible de forma segura desde el ordenador o el teléfono.

7. La mejor manera de seguir el progreso de un tratamiento

Siendo el acné una enfermedad crónica, el seguimiento después de un diagnóstico exitoso es crucial para el buen desarrollo del tratamiento.

Legit.Health permite al paciente convertirse en una parte más activa de su tratamiento al mejorar la comunicación entre ellos y su médico. La aplicación logra esto al proporcionar al usuario una manera fácil y confiable de enviar datos precisos al médico.

Además, la aplicación muestra los datos en un gráfico fácil de leer que muestra el progreso de la afección, permitiendo al médico responder a la pregunta usualmente difícil "¿Me estoy mejorando, doctor?" con datos científicos que respaldan su respuesta.

En conclusión

El revolucionario ALEGI representa el futuro de la dermatología. Permite a los médicos de todo el mundo practicar medicina basada en la evidencia utilizando las mejores herramientas durante el diagnóstico de enfermedades, mientras mejora la comunicación entre el médico y el paciente.

El uso de algoritmos que miden la gravedad del acné contando lesiones a partir de imágenes aumenta la tasa de diagnósticos correctos de los médicos en un 23% y mejora el seguimiento del tratamiento al hacer que el paciente participe más activamente en su propia recuperación.

Colabora con nosotros

En Legit.Health estamos trabajando para mejorar aún más la tecnología de ALEGI, esforzándonos por crear herramientas aún mejores. Esto incluye, por ejemplo, mejorar la diferenciación entre tipos de lesiones de acné, o asegurar que la tecnología funciona correctamente en todos los fototipos de piel.

Si quieres colaborar con nosotros, por favor rellena el siguiente formulario y nos pondremos en contacto contigo a la mayor brevedad.

7 maneras demostradas de mejorar los ensayos clínicos gracias a Legit.Health

· 13 min de lectura
Taig Mac Carthy
Co-founder at Legit.Health
Alfonso Medela
CAIO at Legit.Health

Introducción

Los ensayos clínicos son el motor que impulsa la ciencia médica hacia adelante. Por eso, resulta intuitivo que las herramientas a disposición de quienes están a la vanguardia del progreso deben ser tan avanzadas y de última generación como la investigación en la que se trabaja.

La investigación que nos impulsará hacia el futuro no debería llevarse a cabo con herramientas del pasado, especialmente si aumentan la fiabilidad de los reported outcomes.

Taig Mac Carthy, COO en Legit.Health

Legit.Health acepta el desafío de proporcionar a los investigadores una herramienta de inteligencia artificial útil y fiable para sus ensayos clínicos, mediante la incorporación de algoritmos de aprendizaje profundo y tecnología de análisis de imágenes en una interfaz fácil de usar y bien diseñada.

¿Cómo mejora Legit.Health los ensayos clínicos?

Una buena manera de entender cómo se puede implementar la tecnología de Legit.Health en la investigación clínica para el desarrollo de medicamentos es escuchando la explicación de Diego Herrera. Diego es el Director de Datos Clínicos e Innovación Digital en Almirall.

Como explica Diego Herrera, los promotores de ensayos clínicos dermatológicos enfrentan muchos desafíos:

  • Los investigadores deben cuantificar manualmente las lesiones cutáneas, lo cual es difícil y consume mucho tiempo.
  • Las reacciones cutáneas locales se evalúan subjetivamente, resultando en alta variabilidad en las medidas de intensidad.
  • Esfuerzos tediosos para el investigador, lo que conduce a menor adherencia y un mayor riesgo de error.
  • Falta de condiciones estándar para las observaciones clínicas
  • A los investigadores clínicos les resulta difícil medir con precisión el área donde se ha aplicado un tratamiento, especialmente a largo plazo.

Sin embargo, Diego también explica las oportunidades que brinda la fotografía digital con inteligencia artifical. Diego agrupa estas oportunidades en dos grupos principales: eficiencias y aumento de la calidad de los datos:

  • Eficiencias:
    • Habilitación de la teledermatología y captura de datos remota
    • Documentación digital robusta y transparente durante el estudio
    • Ahorro de tiempo durante las evaluaciones clínicas
  • Aumento de la calidad y robustez de los datos:
    • Ubicación más precisa del área de tratamiento
    • Cálculos automáticos de las lesiones cutáneas
    • Introducción de nuevos puntos finales basados en mediciones de fotografía digital

Puedes ver la presentación de Diego en un congreso tecnológico en Barcelona:

Clip extraído del evento IOT Solutions World Congress organizado en Barcelona el 12 de febrero de 2023.

Problemas reales con los que podemos ayudar

Los patrocinadores y las CRO con las que trabajamos encuentran consistentemente que nuestra tecnología ayuda en ciertas áreas.

  • Hacer que sea más fácil reclutar sitios reduciendo la carga de trabajo de los investigadores, especialmente en el llenado de sistemas de puntuación.
  • Minimizar los riesgos en la formación de sitios, al tiempo que aumenta la velocidad en la formación y reduce los errores de informe.
  • Asegurar la calidad de los datos realizando una verificación de la calidad de la imagen y reducir la variabilidad interobservador en los sistemas de puntuación mediante la estandarización de la medición.

Gracias a esto, Legit.Health ayuda a que las terapias efectivas lleguen más rápido a los pacientes al aumentar tanto la calidad como la cantidad de los puntos finales en cualquier estudio dado, facilitando el proceso de determinar la eficacia de un nuevo medicamento revolucionario lo más fácil posible para el investigador, la CRO y el patrocinador.

Capacidades del software

[object Object]
Px2Csv

Conversión de píxel a CSV

Convierte la información visual detectada por los algoritmos y los metadatos de la imagen en filas de datos, que se pueden exportar a CSV, Excel, JSON o cualquier otra solución de hoja de cálculo.

[object Object]
Algoritmos APROM

Resultados en salud informados por el paciente automáticos

Rellena automáticamente la mayoría de los sistemas de puntuación clínica midiendo los signos visuales contenidos en las imágenes, como descamación, sequedad, eritema, superficie, recuento de lesiones, etc.

[object Object]
Algoritmos MIC

Revisa los criterios de inclusión

Examine automáticamente a los pacientes e incluye o excluye los casos que no se ajusten a los criterios de inclusión del protocolo, ya sea porque la patología no está presente o porque la gravedad es demasiado alta o demasiado baja para el estudio.

[object Object]
Algoritmos DIQA

Medición de la calidad de la imagen dermatológica

Verifica automáticamente las imágenes justo cuando se toman y asegura que tengan la calidad suficiente para que sean útiles. Si una imagen tiene un error, DIQA solicita al usuario que solucione ese problema específico.

[object Object]
Módulo ACA

Alertas de Condiciones Adversas

Escanea las imágenes tomadas por los pacientes en busca de lesiones marcadas como adversas. Por ejemplo, malignidad y pre-malignidad. Si se detecta una condición adversa, alerta a los investigadores.

[object Object]
App de soporte al paciente

Índices de calidad de vida

Permite recopilar PROM como DLQI e índices de calidad de vida más específicos como CU-QoL, AKQoL y muchos más. También acepta cuestionarios personalizados con un creador de formularios.

Captura de pantalla de una aplicación que utiliza la tecnología de Legit.Health.

En este ejemplo en particular, la IA cuenta automáticamente todas las lesiones del acné con gran precisión, mide la gravedad aplicando la fórmula del sistema de puntuación y permite al investigador supervisar y corregir la salida, cuando sea necesario.

Do you want to see the clinical AI technology in action?

La mejor herramienta para ensayos clínicos descentralizados (DCT)

A medida que COVID-19 comenzó a propagarse por el mundo, los centros de investigación y las compañías farmacéuticas que realizaban ensayos clínicos tuvieron que adoptar rápidamente tecnologías y procesos de recopilación de datos remotos para mantener seguros a los pacientes y que los ensayos clínicos continuaran.

Uno de los mayores desafíos para estos nuevos tipos de ensayos clínicos es estar conformes con las regulaciones actuales, al tiempo que se mantiene al paciente más comprometido que nunca para obtener datos precisos y fiables. Afortunadamente, Legit.Health ha desarrollado la herramienta perfecta para superar estos desafíos.

Al poder conectarse a cualquier software de gestión de DCT establecido, como Medable o Apple ResearchKit, Legit.Health es la principal herramienta APROM (Medidas de Resultado Reportadas por el Paciente Automáticas) en el mercado, ya que permite a sus usuarios llevar a cabo un desarrollo de medicamentos clínicos descentralizados eficiente y permite la selección a mayor escala.

7 maneras atractivas de potenciar los ensayos clínicos

1. Previene imágenes de baja calidad

En ensayos clínicos descentralizados o estudios que requieren evidencia fotográfica del proceso de recuperación del paciente, las imágenes defectuosas o de baja calidad pueden obstaculizar el progreso del estudio.

Los revolucionarios algoritmos de aseguramiento de la calidad de la imagen de Legit.Health aumentan la calidad general de las imágenes grabadas convirtiendo un teléfono inteligente ordinario en un dispositivo de captura de imágenes clínicamente fiable, habilitando ensayos clínicos descentralizados y empoderando al paciente para informar sobre su condición de manera autónoma.

Este novedoso algoritmo de aprendizaje profundo lo logra verificando la calidad de la imagen antes de considerarla para los ensayos y, al detectar una caída de calidad o un problema, solicita al usuario que lo corrija antes de tomar otra imagen.

2. Mayor fiabilidad gracias a los algoritmos automáticos de PROMs

Los algoritmos de última generación de Legit.Health son capaces de rellenar automáticamente la mayoría de los sistemas de puntuación clínica analizando síntomas visibles en imágenes como descamación, sequedad, eritema, área afectada o recuento de lesiones, entre otros.

Esto no solo reduce los posibles errores de informe, sino que también facilita el trabajo del gestor de datos, ya que la mayor parte del trabajo rutinario y agotador se automatiza.

Además, los algoritmos proporcionan mayor fiabilidad y mayor precisión en la recolección de datos, ya que no hay diferencia de tiempo entre el registro de la lesión y su condición real, y reduce significativamente tanto la variabilidad interobservador como intraobservador.

Por último, la asistencia de la máquina hace que escalar los ensayos sea trivialmente fácil, ya que remedia la brecha entre idiomas, países o incluso marcas.

Do you want to see the clinical AI technology in action?

3. Verifica automáticamente los criterios de inclusión del protocolo

Los algoritmos automáticamente excluirán a los pacientes que no se ajusten a los criterios de inclusión del protocolo, ya sea porque la gravedad es incompatible con los objetivos del estudio o porque la condición no coincide con el ensayo.

Esto permite que la captación de pacientes en línea se convierta en una opción viable, ampliando así el potencial de pacientes disponibles para los ensayos clínicos.

Además, los revolucionarios algoritmos de asistencia al diagnóstico de Legit.Health detectarán cualquier situación que pueda considerarse adversa, como una enfermedad con alta probabilidad de escalada o una lesión que pueda presentar malignidad, e informarán a los investigadores que el paciente necesita atención médica.

4. Ayuda a los investigadores a extraer toda la información de una imagen

Una de las mayores limitaciones de cualquier ensayo clínico, especialmente uno realizado de manera remota, es el tiempo que se tarda en analizar cada imagen y la experiencia necesaria para convertir una imagen en datos de usuario reales. Esto se hace evidente cuando se considera el horario habitual de un médico y cuánto tiempo tienen para dedicarse a tareas de entrada de datos.

La tecnología de Legit.Health convierte automáticamente cualquier imagen dermatológica en datos en bruto, extrayendo la información oculta en los píxeles y convirtiéndola en valores como rojez, área, gravedad, sequedad, descamación y muchos más.

Esto se traduce en una reducción significativa de la carga de trabajo para el gestor de datos, ya que este proceso es automático, así como en una mayor fiabilidad de los puntos finales clínicos a un costo reducido. La ausencia de cualquier sesgo humano en los algoritmos elimina la variabilidad intraobservador.

Además, esto supondrá una enorme expansión en el alcance de los ensayos clínicos. Hasta ahora, la mayoría de los investigadores se limitan a un par de puntos finales en cualquier estudio dado, ya que tienen que equilibrar las necesidades de la investigación con las limitaciones presupuestarias y de tiempo.

Explicación visual de los algoritmos de píxeles a csv

Explicación visual de los algoritmos de píxeles a csv (px2csv)

Gracias a Legit.Health, medir 2 variables cuesta lo mismo que medir 200, lo que incrementa exponencialmente el número de puntos finales clínicos y permite a los investigadores alcanzar una mayor granularidad en sus datos.

Do you want to see the clinical AI technology in action?

5. Asegura un Protocolo Robusto de Transferencia de Datos

Legit.Health está comprometido con el avance de la investigación farmacéutica proporcionando servicios de transferencia de datos de primera categoría. Nuestros protocolos son robustos, nuestra tecnología avanzada y nuestro compromiso con el éxito del ensayo es inquebrantable. Confíe en nosotros para manejar los datos del ensayo clínico con el máximo cuidado y profesionalismo.

Mecanismo Seguro de Transferencia de Datos

Hemos superado los métodos convencionales de transferencia por correo electrónico. Nuestros canales seguros utilizan la última tecnología de cifrado, protegiendo los datos sensibles más allá de los estándares típicos. Esto significa que cada pieza de datos transferida está protegida contra accesos no autorizados, asegurando que la confidencialidad del paciente y la integridad del ensayo nunca se vean comprometidas.

Formato de Datos Optimizado

El formato de archivo .CSV es universalmente reconocido y fácilmente accesible. Al emplear este formato, garantizamos que los datos que proporcionamos puedan integrarse sin problemas con sus sistemas de gestión de datos existentes, facilitando un análisis e interpretación de datos sencillos sin necesidad de conversiones complejas ni software adicional.

También ofrecemos otros formatos de datos como JSON y XML. Estos se generan programáticamente para eliminar el riesgo de error y proporcionar agilidad y disponibilidad.

Estructura de Datos Robusta

Cada punto final clínico es crítico, por lo que nuestra estructura de datos es meticulosamente detallada y adaptada según su protocolo. Desde mediciones de lesiones hasta puntuaciones de gravedad, capturamos todos los puntos de datos relevantes con precisión, asegurando una cobertura completa de los puntos finales clínicos que necesita monitorear.

La siguiente tabla muestra un ejemplo de los datos que nuestro dispositivo puede proporcionar. Cada fila representa una variable registrada en el archivo de transferencia de datos.

NombreEtiquetaFormatoLongitudEjemplo
Study_IDID del ProtocoloCHAR40A-232323_BH
Site_IDID del SitioCHAR82323
Patient_IDID del SujetoCHAR82323-23
FechaFecha realizadaCHAR10DD-MMM-YYYY
HoraHora realizadaCHAR5HH:MM
Report IDUUID del InformeCHAR500188d3e9-4bf0-7d7d-9904-aec1d69f3e7d
Image IDID de la ImagenCHAR50232323_0210037_Week12.jpg
TipoTipo de LesiónCHAR20Nódulo
Px2cmConversión de píxeles a cmCHAR200.32
Quality_scoreValor numérico que representa la calidad de la imagenCHAR2075, 80
NóduloCantidad de nódulos detectados en la imagenCHAR201, 2, 3
AbscesoCantidad de abscesos detectados en la imagenCHAR201, 2, 3
Túnel drenanteCantidad de túneles drenantes detectados en la imagenCHAR201, 2, 3
Tamaño de la lesiónTamaño del cuadro delimitador que define el ROI de la lesión objetivoCHAR2023.12
Puntuación de gravedadValor numérico que representa la gravedad de la condición según la puntuación IHS4CHAR205, 6

Tenga en cuenta que esto es una simplificación, ya que un archivo de transferencia de datos real puede contener más de 50 filas.

Transmisión de Datos Cegados

Para mantener la integridad del ensayo y asegurar un análisis imparcial, podemos acomodar la transmisión de datos cegados. Este servicio se proporciona bajo solicitud, asegurando que la eficacia del producto investigacional se evalúe con precisión, libre de cualquier posible sesgo.

Frecuencia de Transferencia Adaptable

La naturaleza dinámica de los ensayos clínicos exige flexibilidad. Es por eso que ofrecemos periodicidad de transferencia de datos personalizables que pueden adaptarse a los hitos específicos y necesidades del ensayo. Ya sea a intervalos mensuales o bajo demanda, nuestro protocolo está diseñado para proporcionar los datos que necesita cuando los necesita, sin demoras innecesarias.

Ofrecemos una programación flexible adaptada a los hitos del ensayo y las necesidades del patrocinador, que varía desde entregas de datos mensuales hasta bajo demanda.

6. Fomenta que el paciente se adhiera al protocolo

El enfoque revolucionario de Legit.Health para los ensayos clínicos no solo depende de la tecnología algorítmica de vanguardia para realizar todo el trabajo pesado. Su diseño elegante, centrado en la facilidad de uso y la legibilidad, considera las realidades diarias de los pacientes para ayudarles a adherirse al protocolo del ensayo clínico.

Al crear tareas para el paciente, proporcionándoles alertas y recordatorios, recompensando sus informes con principios extraídos de las ideas de la gamificación o proporcionándoles información útil sobre su enfermedad, Legit.Health aumenta la adherencia del paciente, enriquece la diversidad de los puntos finales y permite ensayos clínicos centrados en el paciente.

7. Incluye índices de calidad de vida y cuestionarios personalizados

Legit.Health incorpora sin problemas los principales índices de calidad de vida como DLQI, CU-QoL o AKQoL, entre otros, permitiendo que los ensayos clínicos enriquezcan los datos que recopilan y les den textura, así como proporcionarles un contexto adicional.

Esto no supone trabajo extra para los investigadores, ya que la aplicación tiene tanto los cuestionarios como la accesibilidad para interpretar esos datos integrados, por lo que los investigadores no necesitan añadir ningún paso al proceso de recopilación de datos.

Obtén acceso ahora

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

AUAS7: la medida de resultado revolucionaria para la Urticaria

· 9 min de lectura
Taig Mac Carthy
Co-founder at Legit.Health
Alfonso Medela
CAIO at Legit.Health
Ruben Garcia Castro
Ruben Garcia Castro
Dermatologist
Antonio Martorell
Antonio Martorell
Dermatologists and Medical Lead at Legit.Health

Introducción

El futuro de la medición de la urticaria está ahora al alcance de la mano. Medir la puntuación de la urticaria y las ronchas es más fácil y fiable que nunca gracias al revolucionario AUAS (Puntuación Automática de Actividad de Urticaria) de Legit.Health. Los investigadores han desarrollado una herramienta que procesa imágenes de smartphones y las analiza automáticamente usando los mismos criterios que el UAS7.

Es ampliamente conocido que las medidas de resultado objetivas, fiables y precisas son clave para la práctica de la medicina basada en evidencias. El UAS7 ha demostrado tener las mejores propiedades de medición y es el más recomendado para su uso en ensayos clínicos al considerar la urticaria.

Aviso

Este post hace referencia a una publicación científica publicada en el Journal of Investigative Dermatology (JID) Innovations. Te animamos a leer la publicación completa, incrustada a continuación.

UAS7: la base del diagnóstico de la urticaria

La urticaria tiene una naturaleza muy variable, incluso cuando se convierte en una enfermedad crónica. Provoca erupciones que varían en intensidad y extensión, y los síntomas pueden variar de un momento a otro. Por esta razón, medir la gravedad es muy complicado. Para lograr este objetivo, el sistema de puntuación más utilizado para esta condición es el UAS7. De hecho, las guías internacionales EAACI/GA2LEN/EDF/WAO para la urticaria recomiendan el uso del UAS en la práctica clínica para determinar la actividad de la enfermedad y la respuesta al tratamiento.

El Urticaria Activity Score (UAS) fue desarrollado como un sistema de puntuación simple que tiene en cuenta el número de ronchas y la intensidad del picor. A pesar de que estas variables son registradas por los pacientes, muchos consideraron que su condición no podía ser descrita con precisión por el análisis aislado de su estado en un día.

Así nació el UAS7. El UAS fue creado en 2006 por un grupo de médicos liderado por un médico alemán llamado Torsten Zuberbier. También vino con una versión que agrega todas las puntuaciones UAS de un paciente durante siete días, lo que permite al médico entender mejor la extensión completa de la enfermedad.

Hoja de puntuación de actividad de urticaria por Novartis

La principal deficiencia del UAS7

A pesar de no ser apropiado para todas las variantes de urticaria, el UAS7 sigue siendo considerado el estándar de oro para la evaluación de la gravedad de la urticaria crónica.

El UAS7 registra, durante 7 días consecutivos, el número diario de ronchas y la intensidad del picor. Es el estándar de oro recomendado por las guías para medir la actividad de la enfermedad en CSU...

Marcus Maurera et all, Urticaria: Collegium Internationale Allergologicum (CIA) Update 2020. Int Arch Allergy Immunol. DOI: 10.1159/000507218

La principal debilidad de este sistema, como muchos otros PROM (Patient Reported Outcome Measures), es su dependencia de que el paciente recopile los datos. Un paciente que no solo carece de la experiencia médica de un médico, sino que sufre de una condición debilitante y estresante que podría empujarlos a exagerar sus síntomas para intentar obtener mejor atención.

La consistencia es otro problema principal. Es un hecho conocido que muchos pacientes olvidarán completar su UAS del día, lo que lleva a datos incompletos. Pero esto no tiene nada que ver con las propiedades clínicas inherentes del UAS7, y por eso fue elegido como base para el revolucionario AUAS7 de Legit.Health.

Do you want to see the clinical AI technology in action?

¿Cómo sabemos si un sistema de puntuación es bueno?

Cuando se trata de evaluaciones dermatológicas, la efectividad de un sistema de puntuación es primordial. Pero, ¿qué es exactamente lo que hace que un sistema de puntuación sea fiable y útil? A través del consenso científico, se han identificado varios factores clave que contribuyen a la robustez de estas escalas. Vamos a profundizar en los elementos cruciales:

  • Facilidad de uso: Este factor considera si el sistema puede aplicarse sin esfuerzo dentro de las limitaciones de tiempo y recursos financieros. Que un sistema sea fácil de usar es crucial para su adopción generalizada en entornos clínicos.
  • Sensibilidad al cambio: Un sistema de puntuación efectivo debe ser capaz de detectar cambios clínicamente significativos a lo largo del tiempo. Esta sensibilidad asegura que cualquier progreso o deterioro en la condición de un paciente se captura con precisión.
  • Fiabilidad interobservador: Esto se refiere a la consistencia de los resultados cuando diferentes observadores utilizan el sistema de puntuación. Una alta fiabilidad interobservador significa que diferentes dermatólogos llegarán a conclusiones similares, mejorando la credibilidad del sistema.
  • Variabilidad intraobservador: Esto analiza la consistencia de los resultados cuando el mismo observador utiliza el sistema de puntuación varias veces. Una baja variabilidad intraobservador indica que el sistema proporciona resultados similares todas las veces que un mismo dermatólogo evalúe un mismo caso.
  • Interpretabilidad: Un sistema de puntuación práctico debería proporcionar interpretaciones cualitativas significativas de sus puntuaciones, como categorizar la gravedad de una condición como leve, moderada o severa.

Estos criterios no solo aseguran la efectividad del sistema de puntuación sino también su aplicabilidad y fiabilidad en diversos escenarios clínicos.

Adaptado de "Methods and definitions to rate the quality of outcome measures". Schmitt, J., Langan, S., Deckert, S., Svensson, A., von Kobyletzki, L., Thomas, K., & Spuls, P. (2013). Assessment of clinical signs of atopic dermatitis: A systematic review and recommendation. Journal of Allergy and Clinical Immunology, 132(6), 1337--1347. doi:10.1016/j.jaci.2013.07.008.

Por qué AUAS7 es la mejor herramienta para determinar la gravedad de la urticaria crónica

Legit.Health es la herramienta revolucionaria de Datos Clínicos y Comunicación para dermatólogos de próxima generación que triplica el empoderamiento de los pacientes.

En casos como la urticaria crónica, donde la recopilación de datos está en manos de los pacientes, tener la mejor herramienta para asegurar que la información registrada sea objetiva, precisa y fiable es de suma importancia. Esto se vuelve especialmente cierto en ensayos clínicos, donde la precisión de los datos puede marcar la diferencia entre un estudio exitoso y uno confuso.

Los algoritmos de Legit.Health califican automáticamente las lesiones solo mirando imágenes de smartphones y reducen las pequeñas medidas de resultado informadas por el paciente (PROMs) al mínimo, usándolas solo para registrar variables como el picor que no se pueden ver en una fotografía. En otras palabras: la herramienta rellenará automáticamente la mayoría de los sistemas de puntuación dermatológicos, tales como PASI, SCORAD, IHS4, GAGS, y por supuesto, UAS.

Explicación de la identificación de ronchas

Explicación de cómo la inteligencia artificial identifica las ronchas en imágenes de urticaria.

El objetivo principal de AUAS7 es proporcionar una herramienta para registrar datos de manera precisa y consistente para evaluaciones rutinarias y estudios clínicos.

Informe Automático de Urticaria

Captura de un informe completo del sistema CADx. El gráfico en la parte superior derecha muestra la evolución de la urticaria, trazando las puntuaciones de AUAS a lo largo del tiempo.

1. Es fácil de usar

La facilidad de uso es primordial en nuestra sociedad moderna, pero especialmente en un caso como la evaluación de la gravedad de la urticaria crónica.

Gracias al revolucionario algoritmo de aprendizaje profundo desarrollado por Legit.Health y al diseño de su interfaz, los pacientes no necesitarán contar el número de ronchas, ni tener que recordar tomar la medición, ya que una notificación en su smartphone les recordará que tomen una simple foto.

Esta foto es analizada por el algoritmo validado clínicamente y sus resultados son enviados al médico, quien se beneficia no solo de la consistencia de los datos generados por este proceso sino también de la facilidad de monitorear las erupciones y el desarrollo de la enfermedad.

Traditional consultation
8 medical acts per hour

Doctor consultation

With Legit.Health
52 medical acts per hour

Doctor remote

Después de todo, la comunicación entre el médico y el paciente es uno de los pilares de la medicina, y debería ser fácil.

2. Es más preciso y fiable

La herramienta de Legit.Health analiza las patologías utilizando un sistema de puntuación validado que tiene tanto el MID más bajo (Diferencia Importante Mínima) como es sensible al LDC más bajo (Cambio Detectable Más Bajo), lo que significa que el algoritmo analiza cada imagen con más precisión y atención al detalle que cualquier observador humano.

En los ensayos clínicos, la cuantificación de la enfermedad es crítica para medir la eficacia de un tratamiento en investigación comparando la gravedad de la enfermedad antes de la terapia con la medida después del tratamiento.

Richard G. Langley, MD,a and Charles N. Ellis, MDb Halifax, Nova Scotia, and Ann Arbor, Michigan Evaluating psoriasis with Psoriasis Area and Severity Index, Psoriasis Global Assessment, and Lattice System Physician's Global Assessment

Además, tiene una mayor validez y fiabilidad mientras mantiene propiedades clinimétricas comparables, gracias al funcionamiento intrínseco de los algoritmos de visión por computadora.

3. Elimina la variabilidad intrínseca de un PROM

Debido a la naturaleza algorítmica de AUAS7, la variabilidad intraobservador se elimina completamente y sin duda, ya que cada imagen y cálculo se almacena ordenadamente en la base de datos de la aplicación.

Después de todo, cuando se calcula el UAS tradicional, los médicos dependen de la capacidad del paciente para contar las ronchas. Estos pacientes, que no tienen formación médica, están bajo presión para dar a su médico información crítica para desarrollar su tratamiento, aumentando su estrés y añadiendo aún más inconvenientes a su vida diaria.

Este tipo de enfoque de medición conduce a mucha variabilidad que, con la herramienta adecuada, es fácil de evitar.

4. Permite al paciente informar sobre las erupciones en tiempo real

Gracias a la herramienta desarrollada por Legit.Health, un paciente ya no necesita esperar a una cita con el médico para informar sobre un brote de su afección.

La aplicación permite al paciente tomar una simple foto con su smartphone y enviarla a un algoritmo que automáticamente contará el número de ronchas. Posteriormente, la aplicación ejecuta un sencillo cuestionario sobre el picor y la calidad de vida y envía toda la información al médico que maneja el caso.

En menos de 23 segundos, se puede informar sobre la erupción, evitando visitas insatisfactorias al médico donde la gravedad del brote ha disminuido para cuando el paciente llega al centro médico.

Do you want to see the clinical AI technology in action?

5. Empodera al paciente para participar en su propio tratamiento

Uno de los malos usos más reportados del UAS7 es debido a la inconveniencia de este sistema de puntuación para la vida de un paciente que no solo tiene que lidiar con una condición incapacitante y estresante, sino recordar aplicar el sistema de puntuación para obtener una buena atención de sus médicos.

La aplicación revolucionaria desarrollada por Legit.Health asegura que llenar apresuradamente el UAS7 el día antes de la visita al médico tenga menos excusas.

Gracias a notificaciones diarias y recordatorios, su accesibilidad y facilidad de uso, Legit.Health hace que registrar datos con la ayuda de sus pacientes sea más fácil que nunca, al hacerlos participar activamente en su tratamiento y empoderarlos mejorando la comunicación tan importante con su médico.

6. Hace que los datos sean fáciles de acceder e interpretar

Por último, pero no menos importante, la interfaz de Legit.Health proporciona acceso a toda la información relevante sobre el paciente de manera fácil de leer.

Cada dato derivado del AUAS7 se muestra claramente en pantalla, mostrando la gravedad de la afección y los diferentes factores considerados por el algoritmo al analizar la imagen y sus puntuaciones.

La aplicación también proporciona un gráfico práctico que muestra la evolución de la enfermedad a lo largo del tiempo y facilita el seguimiento del proceso de curación y la efectividad del tratamiento.

Do you want to see the clinical AI technology in action?

Conclusión

El revolucionario AUAS7 representa el futuro de la dermatología. Permite a los médicos de todo el mundo practicar medicina basada en evidencias utilizando las mejores herramientas durante el diagnóstico de enfermedades mientras mejora la comunicación efectiva entre médico y paciente.

Gracias a Legit.Health, los médicos de todo el mundo pueden mejorar su tasa de diagnóstico correcto en un 23% y hacer que el tratamiento sea más fácil de seguir para el paciente al hacerlos participantes activos en su propia recuperación.

No podemos mejorar lo que no podemos medir, y gracias al AUAS7 y Legit.Health el futuro del estudio y tratamiento de la urticaria es más prometedor que nunca.

Obtén acceso ahora

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

APASI: The bright future of Psoriasis severity assessment has arrived

· 8 min de lectura
Taig Mac Carthy
Co-founder at Legit.Health
Alfonso Medela
CAIO at Legit.Health

Introduction

The future of dermatology has arrived thanks to Legit.Health's revolutionary application of the PASI system: APASI (Automatic Psoriasis Area and Severity Index). Using computer vision algorithms, the researchers have created a tool that processes smartphone images and automatically translates them into the domain of the PASI.

It is widely known that objective, reliable, and precise outcome measures are key to evidence-based medicine. When considering psoriasis, the PASI has the best measurement properties and is the most recommended for clinical trials. That is why we automated the PASI to help patients and doctors achieve better health outcomes.

Automatic PASI for psoriasis

The origins of the PASI

This scoring system for psoriasis was first published in a paper by T. Fredericksson and U. Pettersson in 1978, where they explored the validity of a new treatment for the disease.

Their formula for assessing the severity of the condition would go on to become the gold standard for dermatologists around the globe and is still widely used to this day.

In order to calculate the PASI, the sum of the severity of these three main changes was multiplied with the numerical value of the areas involved and with the various percentages of the four body areas. These values were then added in order to obtain the PASI.

Fredriksson, T., & Pettersson, U. (1978). Severe Psoriasis -- Oral Therapy with a New Retinoid. Dermatology, 157(4), 238--244. doi:10.1159/000250839

PASI score sheet by British Columbia Ministry of Health

The shortfalls of the pen-and-paper PASI

The main goal of PASI is to provide a tool to record data precisely and consistently for routine evaluations and clinical studies. However, it carries a set of problems and limitations.

We found substantial variation [in the results] between experienced and inexperienced physicians using PASI

Richard G. Langley, MD,a and Charles N. Ellis, MDb Halifax, Nova Scotia, and Ann Arbor. Michigan Evaluating psoriasis with Psoriasis Area and Severity Index, Psoriasis Global Assessment, and Lattice System Physician's Global Assessment

In other words, there is a high inter-observer variability, that is most pronounced when compared between experienced and inexperienced practitioners.

Aside from the inter-observer variation, many physicians have reported that filling up the paper sheet is too tedious and time-consuming and that they don't really use it on a day-to-day basis.

Do you want to see the clinical AI technology in action?

Digital calculators: A half-baked solution to the problem

With the advent of basic computation, several digitalized versions of the PASI scoring system were developed, in an attempt to reduce the time wasted in calculations. These online calculators tackle, although inefficiently, just one of the issues the traditional PASI has. While the formula is calculated automatically, the doctor still has to fill in the value for each parameter.

This not only still requires the time and attention of the physician, but does nothing to address the multiple issues of lack of objectivity and reproducibility within the PASI system.

¿Cómo sabemos si un sistema de puntuación es bueno?

Cuando se trata de evaluaciones dermatológicas, la efectividad de un sistema de puntuación es primordial. Pero, ¿qué es exactamente lo que hace que un sistema de puntuación sea fiable y útil? A través del consenso científico, se han identificado varios factores clave que contribuyen a la robustez de estas escalas. Vamos a profundizar en los elementos cruciales:

  • Facilidad de uso: Este factor considera si el sistema puede aplicarse sin esfuerzo dentro de las limitaciones de tiempo y recursos financieros. Que un sistema sea fácil de usar es crucial para su adopción generalizada en entornos clínicos.
  • Sensibilidad al cambio: Un sistema de puntuación efectivo debe ser capaz de detectar cambios clínicamente significativos a lo largo del tiempo. Esta sensibilidad asegura que cualquier progreso o deterioro en la condición de un paciente se captura con precisión.
  • Fiabilidad interobservador: Esto se refiere a la consistencia de los resultados cuando diferentes observadores utilizan el sistema de puntuación. Una alta fiabilidad interobservador significa que diferentes dermatólogos llegarán a conclusiones similares, mejorando la credibilidad del sistema.
  • Variabilidad intraobservador: Esto analiza la consistencia de los resultados cuando el mismo observador utiliza el sistema de puntuación varias veces. Una baja variabilidad intraobservador indica que el sistema proporciona resultados similares todas las veces que un mismo dermatólogo evalúe un mismo caso.
  • Interpretabilidad: Un sistema de puntuación práctico debería proporcionar interpretaciones cualitativas significativas de sus puntuaciones, como categorizar la gravedad de una condición como leve, moderada o severa.

Estos criterios no solo aseguran la efectividad del sistema de puntuación sino también su aplicabilidad y fiabilidad en diversos escenarios clínicos.

Adaptado de "Methods and definitions to rate the quality of outcome measures". Schmitt, J., Langan, S., Deckert, S., Svensson, A., von Kobyletzki, L., Thomas, K., & Spuls, P. (2013). Assessment of clinical signs of atopic dermatitis: A systematic review and recommendation. Journal of Allergy and Clinical Immunology, 132(6), 1337--1347. doi:10.1016/j.jaci.2013.07.008.

Six ways in which APASI is better

Legit.Health is the revolutionary Clinical Data and Communication tool for Next-generation dermatologists that triples the empowerment of patients.

After 12 months using Legit.Health, in which we analysed the applicability of the tool at our hospital, we have drawn conclusions that help to propose a new care paradigm in the follow-up of psoriasis.

Dra. Elena Sánchez-Largo, Torrejon Hospital

The purpose of the deep learning algorithms is to relieve doctors from the tedious manual calculation of scoring systems and allow the practice of more objective evidence-based dermatology while speeding up the pathology reporting process and increasing patients' autonomy and control.

Legit.Health's algorithms automatically grade lesions just by looking at smartphone images and small patient-reported outcome measures (PROMs). In other words: the tool will automatically fill in most of the dermatology scoring systems, such as PASI, SCORAD, UAS, GAGS, and many more.

APASI: The bright future of Psoriasis severity assessment has arrived

Esto significa que la nueva versión de este sistema de puntuación extrae datos de manera precisa y consistente, tanto durante evaluaciones rutinarias como en investigación clínica. La mejora se puede ver en la siguiente tabla, que compara las métricas de rendimiento de la forma más común de utilizar los sistemas de puntuación:

Papel y lápizDigitalAutomático (IA)
Auto-supervisión--Realiza diagnóstico
Facilidad de uso≈ 600 segundos≈ 420 segundos≈ 23 segundos
Sensibilidad al cambio0 a 40 a 40 a 100
Variabilidad interobservadorMedia (20%)Media (20%)La más baja (8%)
Variabilidad intraobservadorAltaAltaCero

Tabla 1: Comparación entre diferentes métodos de puntuación de la severidad de una enfermedad. El método automático impulsado por inteligencia artificial presenta un mejor rendimiento en la mayoría de los indicadores.

Gracias a los algoritmos de aprendizaje profundo, Legit.Health libera a los médicos de la tediosa tarea de calcular manualmente los sistemas de puntuación y permite la práctica de una dermatología basada en evidencia más objetiva. Además, al utilizar algoritmos para medir la sequedad, la liquenificación, el eritema, el exudado, el edema y muchos más signos, la herramienta puede calcular signos visuales de manera más fiable y consistente.

1. Easier to use and faster than any other existing method

While an experienced physician might take six to seven minutes to completely fill in and calculate the PASI score of a patient, an inexperienced one will need ten minutes. Meanwhile, Legit.Health's algorithm only takes 23 seconds to get the final score, including capturing the image.

This is key both from a time management perspective, allowing the doctors better use their time with the patient, and from a clinical perspective. The fact that many physicians won't fill in any scoring system for considering the process too tedious and time-consuming and would rather make a gut estimate of the severity of the disease is incompatible with the modern idea of practising evidence-based medicine.

2. APASI assists the doctor in the diagnosis of the disease

The algorithm developed by Legit.Health isn't limited to simply measuring the severity, like the PASI does. It can also help assess whether or not the condition is actually psoriasis. The APASI has been trained using the input of top dermatologists to distinguish between hundreds of conditions, including most types of psoriasis.

This means that APASI will distinguish between several types of psoriasis and assist the doctor in the disease assessment process, not only making it quicker by providing relevant information but improving the rate of correct diagnosis by 23%

Do you want to see the clinical AI technology in action?

3. APASI can detect small changes in the evolution of the pathology

Legit.Health's tool analyzes the pathologies using a validated scoring system that has both the lowest MID (Minimal important Difference) and is sensible to the lowest LDC (Lowest Detectable Change), which means the algorithm analyzes every image with more precision and attention to detail than any human observer would.

In clinical trials, quantification of the disease is critical to measure the efficacy of an investigational treatment by comparing the severity of disease before therapy to that measured after treatment.

Richard G. Langley, MD,a and Charles N. Ellis, MDb Halifax, Nova Scotia, and Ann Arbor, Michigan Evaluating psoriasis with Psoriasis Area and Severity Index, Psoriasis Global Assessment, and Lattice System Physician's Global Assessment

Furthermore, it has a higher validity and reliability while maintaining comparable clinimetric properties, thanks to the intrinsic functioning of computer vision algorithms.

4. Greatly reduces inter-observer variability

Our data indicate that even experienced investigators had difficulty with PASI in rating the area of involvement […], especially among patients with more severe psoriasis.

Richard G. Langley, MD,a and Charles N. Ellis, MDb Halifax, Nova Scotia, and Ann Arbor, Michigan Evaluating psoriasis with Psoriasis Area and Severity Index, Psoriasis Global Assessment, and Lattice System Physician's Global Assessment

The experimental results show that APASI outperforms the baseline methods when it comes to inter-observer variability, achieving a mean absolute percentage of error of just 13%, way below the usual 20% that can be observed in the classical application of the traditional scoring systems.

5. Zero intra-observer variability

The algorithmic nature of the APASI eliminates entirely, and without question, the intra-observer variability, as every reading is reliably consistent.

This allows the doctor to not rely on his memory when assessing the severity of the psoriasis, so they can focus on the analysis of the contextual information. In this sense, the more objective data reduces considerably the risk of misdiagnosing, providing a more objective, accurate, and precise way of tracing the development of the disease.

To judge a treatment effect, the variation in rating a patient from time to time should be low

Richard G. Langley, MD,a and Charles N. Ellis, MDb Halifax, Nova Scotia, and Ann Arbor, Michigan Evaluating psoriasis with Psoriasis Area and Severity Index, Psoriasis Global Assessment, and Lattice System Physician's Global Assessment

This becomes especially important in clinical trials, where reducing this kind of variability is key to gathering the precise data required in this kind of study.

6. More accessible and easier-to-read data

Last but not least, Legit.Health's interface provides access to all the relevant information about the patient in an easy-to-read manner.

Every data derived from the APASI is clearly displayed on the screen, showing the severity of the affection and the different factors considered by the algorithm when analyzing the image and their scores.

The app also provides a handy graff that shows the evolution of the disease across time and makes following the healing process and the effectiveness of the treatment really easy.

Do you want to see the clinical AI technology in action?

In conclusion

The revolutionary and innovative APASI represents the future of dermatology. We are giving doctors access to the best tool for the diagnosis of psoriasis and allowing them to practice evidence-based medicine and improve the communication between doctor and patient.

Thanks to Legit.Health, doctors across the globe can improve their correct diagnosis rate by 23% and make treatment easier to follow for the patient by making them active participants in their own recovery.

There is no denying that the use of algorithms that estimate the severity of the disease represents a bright future for the practice of dermatology and that will, without doubt, help advance the field.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

¿Los algoritmos de Legit.Health están científicamente validados?

· 8 min de lectura
Alfonso Medela
CAIO at Legit.Health
Antonio Martorell
Antonio Martorell
Dermatologists and Medical Lead at Legit.Health
Ruben Garcia Castro
Ruben Garcia Castro
Dermatologist
Taig Mac Carthy
Co-founder at Legit.Health
Ramón Grimalt
Ramón Grimalt
Dermatologist and associate professor

Introducción

Como creadores de tecnología sanitaria, es crucial cuestionar el respaldo científico de nuevas herramientas. Aquí discutimos la sólida validación clínica y el proceso de revisión al que ha sido sometida nuestra tecnología, reflejando nuestro compromiso con soluciones basadas en evidencia.

Las publicaciones que mencionamos aquí no incluyen todos nuestros trabajos. Tampoco, incluyen la evidencia presentada ante los organismos certificadores como parte de nuestro proceso de certificación como dispositivo sanitario.

Respuesta breve

Sí, Legit.Health ha sido validado clínicamente en diversos entornos sanitarios por destacados especialistas en sus campos. Nuestra tecnología ha demostrado su eficacia en mejorar el diagnóstico y seguimiento, con estudios específicos centrados en ciertas patologías para evaluar sensibilidad y precisión.

Varios de estos estudios se han publicado en prestigiosas revistas de dermatología y otros se encuentran en distintas fases de publicación. Además, también aportamos pruebas clínicas durante el proceso de certificación como producto sanitario, algunas de las cuales no se han hecho públicas.

Do you want to see the clinical AI technology in action?

Respuesta detallada

La tecnología detrás de Legit.Health es compleja y multifacética. Detrás de un proceso aparentemente simple para el usuario, interactúan varios algoritmos. De hecho, nuestra tecnología integra múltiples algoritmos no solo para diagnosticar y evaluar la gravedad de las enfermedades, sino también para optimizar la precisión de la derivación, garantizar la calidad de la imagen y medir la eficacia del tratamiento.

Dermatitis Atópica

Nuestro estudio ASCORAD (Puntuación Automática de Dermatitis Atópica) fue publicado en la revista Journal of Investigative Dermatology (JID) Innovations en colaboración con el Dr. Ramón Grimalt. Este estudio detalla nuestro enfoque para automatizar la evaluación de la gravedad de la dermatitis y el eccema.

Medela, A., Mac Carthy, T., Aguilar Robles, S. A., Chiesa-Estomba, C. M., & Grimalt, R. (2022). Puntuación Automática de la Dermatitis Atópica Utilizando Aprendizaje Profundo: Un Estudio Piloto. En JID Innovations (Vol. 2, Núm. 3, p. 100107). Elsevier BV. https://doi.org/10.1016/j.xjidi.2022.100107

Este trabajo también es reconocido en la literatura científica reciente, destacando su potencial para revolucionar la evaluación de la gravedad de la dermatitis atópica.

(...) muy prometedor es el intento de llegar a una definición automática de la gravedad de la DA utilizando CNN (...) para lograr una precisión de puntuación de eritema, papulación, excoriación y liquenificación comparable a la de los dermatólogos (...). Los avances aplicativos computacionales en esta dirección han llevado al diseño más reciente de la Puntuación Automática de la Dermatitis Atópica (ASCORAD).

Li Pomi F, Papa V, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Inteligencia Artificial: Una Instantánea de su Aplicación en Enfermedades Cutáneas Inflamatorias Crónicas y Autoinmunes. Life. 2024; 14(4):516. https://doi.org/10.3390/life14040516

Descubre más sobre ASCORAD de sus autores en este webinar:

En este video (en español), el Dr. Ramón Grimalt y Alfonso Medela, ambos coautores de la publicación, explican de qué trata el artículo.

Hidradenitis Supurativa

El AIHS4, nuestro nuevo sistema para puntuar la Hidradenitis Supurativa, se detalla en Skin Research and Technology. Este estudio muestra nuestro compromiso por desarrollar soluciones de IA para patologías dermatológicas complejas.

Hernández Montilla, I., Medela, A., Mac Carthy, T., Aguilar, A., Gómez Tejerina, P., Vilas Sueiro, A., González Pérez, A. M., Vergara de la Campa, L., Luna Bastante, L., García Castro, R., & Alfageme Roldán, F. (2023). Sistema Automático Internacional de Puntuación de Hidradenitis Supurativa (AIHS4): Una herramienta novedosa para evaluar la gravedad de la hidradenitis supurativa utilizando inteligencia artificial. En Skin Research and Technology (Vol. 29, Núm. 6). Wiley. https://doi.org/10.1111/srt.13357

El AIHS4 ha sido destacado en publicaciones científicas recientes, como el siguiente artículo del Consejo Nacional de Investigación de Italia y las Universidades de Palermo y Messina:

(...) para superar el IHS4, que es consumidor de tiempo y está sujeto a variabilidad, se introduce el AIHS4, utilizando un modelo de DL, Legit.Health-IHS4net, para la detección de lesiones (...). Esta evidencia destaca la utilidad de la IA en la dermatología basada en la evidencia, ofreciendo una herramienta potencial para capacitar a los dermatólogos en la práctica diaria y los ensayos clínicos.

Li Pomi F, Papa V, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Inteligencia Artificial: Una Instantánea de su Aplicación en Enfermedades Cutáneas Inflamatorias Crónicas y Autoinmunes. Life. 2024; 14(4):516. https://doi.org/10.3390/life14040516

También hemos presentado el IHS4 en varios congresos. Por ejemplo, la siguiente imagen muestra nuestro póster en el congreso nacional de dermatología de 2022 (AEDV).

Equipo de investigación de Legit.Health

Equipo de investigación de Legit.Health presentando el póster AIHS4

Urticaria (Ronchas)

El sistema de Puntuación Automática de Actividad de Urticaria (AUAS) ha sido publicado en Journal of Investigative Dermatology (JID) Innovations, mostrando nuestro enfoque basado en aprendizaje profundo para la evaluación de la gravedad de la urticaria.

Mac Carthy, T., Hernández Montilla, I., Aguilar, A., García Castro, R., González Pérez, A. M., Vilas Sueiro, A., Vergara de la Campa, L., Alfageme, F., & Medela, A. (2024). Puntuación Automática de Actividad de Urticaria: Conteo Automático de Ronchas basado en Aprendizaje Profundo para la Evaluación de la Gravedad de la Urticaria. En JID Innovations (Vol. 4, Núm. 1, p. 100218). Elsevier BV. https://doi.org/10.1016/j.xjidi.2023.100218

Nuestro trabajo en el AUAS fue presentado en congresos como la reunión anual de la AEDV en el año 2021. El siguiente video muestra una breve explicación del AUAS en el congreso mencionado anteriormente:

En este video (en español), Taig Mac Carthy, coautor de la publicación, explica cómo funciona la UAS automática para la urticaria, en el congreso anual de la Academia Española de Dermatología.

Calidad de imagen

También publicamos nuestra investigación sobre la tecnología no diagnóstica. Tal es el caso de la Evaluación de la Calidad de Imágenes Dermatológicas (DIQA), que garantiza la utilidad clínica de las imágenes para consultas remotas y ensayos clínicos. Esto fue publicado en el Journal of the American Academy of Dermatology.

Hernández Montilla, I., Mac Carthy, T., Aguilar, A., & Medela, A. (2023). Evaluación de la Calidad de Imágenes Dermatológicas (DIQA): Inteligencia Artificial para garantizar la utilidad clínica de las imágenes para consultas remotas y ensayos clínicos. En Journal of the American Academy of Dermatology (Vol. 88, Núm. 4, pp. 927-928). Elsevier BV. https://doi.org/10.1016/j.jaad.2022.11.002

En este video (en español), Taig Mac Carthy, coautor de la publicación, explica cómo funciona la inteligencia artificial de derivación, incluida la Garantía de Calidad de Imágenes, en el congreso anual de la Academia Española de Dermatología.

Comunicación oral en el congreso anual de la Academia Española de Dermatología (AEDV).

Psoriasis

Nuestro trabajo en el APASI, el Sistema Automático de Puntuación de Psoriasis desarrollado por nuestro equipo, fue reconocido por la AEDV con un premio en la categoría de imágenes médicas.

Alfonso Medela sosteniendo el premio

Alfonso Medela sosteniendo el premio AEDV para el PASI

Otras investigaciones

También estamos trabajando para implementar nuestra tecnología en nuevas áreas del conocimiento médico, como el caso de nuestra colaboración con el Dr. Sergio Vañó y su equipo del Hospital Ramón y Cajal, que están liderando la aplicación de la tecnología de IA para medir la gravedad de la alopecia frontal fibrosante (FFA).

Otro ejemplo del equipo de Legit.Health ampliando el alcance de la tecnología algorítmica de aprendizaje profundo aplicada a la medicina sería la parálisis facial. El Dr. Goiztidi Díaz Basterra, el Dr. Luis Barbier Herrero y la Dra. Estíbaliz Ortiz de Zárate están liderando un esfuerzo en el Hospital de Basurto para aplicar esta tecnología revolucionaria a este campo.

Un buen ejemplo sería el extenso ensayo clínico en el que la Dra. Leticia Calzado está liderando en el Hospital de Torrejón, donde ella y su equipo están validando el proceso de diagnóstico asistido por ordenador con excelentes resultados.

Do you want to see the clinical AI technology in action?

En algunos casos, los resultados prometedores han llevado a los equipos de investigación a ampliar el alcance del estudio. Como el estudio que se lleva a cabo tanto en el Hospital de Cruces como en el Hospital de Basurto bajo la supervisión de los Dres. Jesús Gardeazabal y Rosa María Izu Belloso, estudiando las opciones de diagnóstico asistido por ordenador en el caso del Melanoma.

Aplicación de Legit.Health en ordenador

Trabaja con nosotros

En Legit.Health, estamos trabajando para mejorar aún más la tecnología, esforzándonos por crear herramientas aún mejores. Esto incluye, por ejemplo, mejorar la diferenciación entre tipos de lesiones de HS, o asegurarnos de que la tecnología funcione correctamente en todos los fototipos de piel.

Si deseas trabajar con nosotros, por favor completa el siguiente formulario y nos pondremos en contacto contigo lo antes posible.

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Mi médico ha creado una cuenta para mí en Legit.Health, ¿qué significa esto?

· 3 min de lectura
Andy Anguilar
CEO at Legit.Health
Taig Mac Carthy
Co-founder at Legit.Health

En Legit.Health, entendemos que recibir un correo electrónico inesperado sobre una nueva cuenta puede ser confuso y potencialmente alarmante. Este post está diseñado para aclarar qué significa cuando recibes una notificación de que tu proveedor de atención médica ha creado una cuenta para ti usando nuestra plataforma.

¿Qué es Legit.Health?

Legit.Health es una plataforma médica avanzada utilizada por profesionales de la salud para mejorar la forma en que interactúan y gestionan la atención al paciente. Nuestra tecnología está diseñada para agilizar la comunicación entre tú y tu proveedor de atención médica, haciéndola más eficiente y efectiva.

¿Por qué recibí este correo electrónico?

Tu proveedor de atención médica ha creado una cuenta para ti en nuestra plataforma para facilitar una mejor comunicación y gestión de tu tratamiento. Esto puede incluir acceso a registros médicos, programación de citas y herramientas de gestión de la salud que forman parte de tu plan de tratamiento.

Lo que este correo electrónico no es:

Este correo electrónico no es...

  1. Una comunicación de marketing: El correo que recibiste no es un anuncio, ni es un intento de venderte un producto o servicio. Es una notificación sobre tu sistema de gestión de salud configurado por tu proveedor de atención médica.
  2. Una violación de la privacidad: Tus datos personales no se han compartido sin consentimiento. Legit.Health se adhiere estrictamente a las leyes de protección de datos para asegurar que tu información esté segura y se use adecuadamente. La configuración de tu cuenta es parte de los procedimientos acordados entre Legit.Health y tu proveedor de atención médica para asegurarse de que recibas la mejor atención posible.
  3. Spam no solicitado: Este correo es una parte legítima de los servicios en los que tu proveedor de atención médica ha optado por tu parte, destinado a mejorar tu experiencia de atención médica.

Beneficios de tu cuenta en Legit.Health

Aquí te presentamos varias formas en que tu nueva cuenta en Legit.Health puede beneficiarte:

  • Mejor comunicación con tu proveedor de atención médica: Recibe fácilmente actualizaciones, resultados de exámenes y mensajes de tu proveedor de atención médica.
  • Acceso a tus registros médicos: Consulta tus registros y historial de salud en un solo lugar, lo que es especialmente útil para gestionar condiciones a largo plazo.
  • Programación de citas: Reserva, reprograma o cancela citas con tu proveedor de atención médica según tu conveniencia.
  • Herramientas de monitoreo de salud: Dependiendo de la configuración de tu proveedor de atención médica, podrías tener acceso a herramientas que ayuden a monitorear y gestionar tu salud.

¿Qué debo hacer a continuación?

  • Activa tu cuenta: Sigue las instrucciones del correo electrónico para configurar tu contraseña y acceder a tu nueva cuenta.
  • Verifica tu información: Una vez que tu cuenta esté activa, verifica que tu información personal sea correcta y actualiza cualquier detalle si es necesario.
  • Explora la plataforma: Familiarízate con las características disponibles para ti. Podrías encontrar herramientas valiosas para gestionar citas, comunicarte con tu médico y mucho más.

¿Tienes más preguntas?

Si tienes alguna duda o pregunta sobre tu nueva cuenta o el correo electrónico que recibiste, no dudes en contactar directamente a tu proveedor de atención médica. Ellos pueden proporcionar más aclaraciones sobre por qué se configuró la cuenta y cómo puedes beneficiarte de usarla.

En Legit.Health, nuestro objetivo es asegurar que tu experiencia con tu proveedor de atención médica sea fluida y de apoyo. Estamos aquí para apoyar tu camino hacia una mejor salud, empoderado por la tecnología innovadora.

ASCORAD: El sistema automático de puntuación de la dermatitis atópica de próxima generación

· 11 min de lectura
Ramón Grimalt
Ramón Grimalt
Dermatologist and associate professor
Taig Mac Carthy
Co-founder at Legit.Health
Alfonso Medela
CAIO at Legit.Health

Introducción

Legit.Health presenta con orgullo un avance significativo en las evaluaciones dermatológicas: el sistema ASCORAD (Puntuación Automática de la Dermatitis Atópica SCOR). Esta herramienta innovadora aprovecha algoritmos avanzados de visión por computadora para analizar imágenes capturadas por smartphones y alinearlas automáticamente con el sistema de puntuación SCORAD.

El ASCORAD ha sido mencionado en publicaciones científicas recientes, como el siguiente artículo del Consejo Nacional de Investigaciones de Italia, y las Universidades de Palermo y Mesina:

(...) es muy prometedor el intento de llegar a una definición automática de la gravedad de la DA utilizando CNNs (...) para lograr una precisión de puntuación de eritema, papulación, excoriación y liquenificación comparable a la de los dermatólogos (...). Los avances aplicativos computacionales en esta dirección han llevado al diseño más reciente del SCOR Automático de la Dermatitis Atópica (ASCORAD).

Li Pomi F, Papa V, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Artificial Intelligence: A Snapshot of Its Application in Chronic Inflammatory and Autoimmune Skin Diseases. Life. 2024; 14(4):516. https://doi.org/10.3390/life14040516

De hecho, las herramientas de medición objetivas, fiables y precisas son fundamentales para la atención sanitaria basada en evidencias. La integración de ASCORAD en la suite de herramientas de Legit.Health representa un cambio de paradigma en cómo se evalúa y maneja la dermatitis atópica. Al automatizar el proceso SCORAD, ASCORAD no solo mejora la precisión y la fiabilidad de las evaluaciones, sino que también simplifica el flujo de trabajo para los profesionales de la salud, estableciendo un nuevo estándar para el cuidado dermatológico.

Do you want to see the clinical AI technology in action?

Mucho ha cambiado desde 1993

Debemos mucho al Grupo de Trabajo Europeo sobre dermatitis atópica que publicó el primer artículo sobre SCORAD en 1993. Estaban tratando de abordar un enorme obstáculo tanto en la práctica clínica como en los ensayos clínicos. Como afirmaron los autores:

Los métodos de evaluación para la dermatitis atópica (DA) no están estandarizados, y los estudios terapéuticos son difíciles de interpretar.

Severity Scoring of atopic dermatitis: The SCORAD Index. (1993). Dermatology, 186(1), 23-31. doi:10.1159/000247298

Esta fue la premisa que llevó a los renombrados profesores Alain Taïeb y Jean-François Stalder a asumir la difícil tarea de desarrollar un índice de gravedad compuesto junto con un brillante equipo de investigadores. La creación del SCORAD fue un golpe de genio y una enorme contribución al conocimiento médico de la humanidad.

El SCORAD de papel y lápiz

La solución propuesta en 1993 puede parecer algo anticuada hoy en día, pero es una manera muy inteligente de abordar el problema. Su objetivo era crear un sistema de evaluación que destacara en simplicidad y facilidad de uso. Para ello, crearon la siguiente hoja de papel:

Hoja de papel que contiene la plantilla SCORAD para la práctica clínica.

La fórmula del índice SCORAD es: A/5 + 7B/2 + C. En esta fórmula, A se define como la extensión (0-100), B como la intensidad (0-18) y C como los síntomas subjetivos (0-20). La puntuación máxima del índice SCORAD es 103.

Contenido relacionado

Mira este video donde uno de los creadores del SCORAD, el profesor Jean-François Stalder, interactúa con uno de los creadores del ASCORAD, Taig Mac Carthy.

Clips extraídos del evento "Inteligencia artificial: ¿qué futuro para los pacientes con eccema?" organizado por la Fundación Pierre Fabre Eczema el 14 de septiembre de 2023

A pesar de la amplia aceptación y utilidad del SCORAD y EASI en la evaluación de la dermatitis atópica, hay una advertencia notable asociada con estas herramientas:

De hecho, el sistema de puntuación SCORAD es representativo y bien evaluado, pero muestra, como todos los demás sistemas, desacuerdos intra e interobservador. La variación en las puntuaciones es de aproximadamente el 20%.

Oranje, A. P., Glazenburg, E. J., Wolkerstorfer, A., & de Waard-van der Spek, F. B. (2007). Practical issues on interpretation of scoring atopic dermatitis: the SCORAD index, objective SCORAD and the three-item severity score. British Journal of Dermatology, 157(4), 645-648. doi:10.1111/j.1365-2133.2007.08112.x

El enfoque digital: calculadoras en línea

Con la revolución digital y el auge de los ordenadores, investigadores de todo el mundo desarrollaron versiones digitales del SCORAD de papel y lápiz.

La principal ventaja de estos sistemas es que realizan automáticamente el cálculo de la fórmula A/5 + 7B/2 + C, y por eso la gente los llama calculadoras digitales. Sin embargo, las calculadoras digitales tienen las mismas limitaciones que sus predecesores de papel y lápiz: siguen siendo muy subjetivas y requieren mucho tiempo, así como conocimientos, para utilizarlas correctamente.

Tener que estimar el enrojecimiento o la descamación del área afectada a simple vista, solo mirándola, se siente muy anticuado.

Dr. Ramon Grimalt

La próxima generación: puntuación automática

ASCORAD

Legit.Health es la herramienta revolucionaria de datos y comunicación clínica para dermatólogos de próxima generación que triplica la fiabilidad de las medidas de resultados. La tecnología acelera el proceso de informes de patología y aumenta la autonomía y el control de los pacientes.

Esto significa que la nueva versión de este sistema de puntuación extrae datos de manera precisa y consistente, tanto durante evaluaciones rutinarias como en investigación clínica. La mejora se puede ver en la siguiente tabla, que compara las métricas de rendimiento de la forma más común de utilizar los sistemas de puntuación:

Papel y lápizDigitalAutomático (IA)
Auto-supervisión--Realiza diagnóstico
Facilidad de uso≈ 600 segundos≈ 420 segundos≈ 23 segundos
Sensibilidad al cambio0 a 40 a 40 a 100
Variabilidad interobservadorMedia (20%)Media (20%)La más baja (8%)
Variabilidad intraobservadorAltaAltaCero

Tabla 1: Comparación entre diferentes métodos de puntuación de la severidad de una enfermedad. El método automático impulsado por inteligencia artificial presenta un mejor rendimiento en la mayoría de los indicadores.

Gracias a los algoritmos de aprendizaje profundo, Legit.Health libera a los médicos de la tediosa tarea de calcular manualmente los sistemas de puntuación y permite la práctica de una dermatología basada en evidencia más objetiva. Además, al utilizar algoritmos para medir la sequedad, la liquenificación, el eritema, el exudado, el edema y muchos más signos, la herramienta puede calcular signos visuales de manera más fiable y consistente.

Do you want to see the clinical AI technology in action?

El problema con el SCORAD

Es un hecho bien documentado que el SCORAD es una puntuación compuesta válida, internamente consistente, sensible e interpretable que incluye la intensidad y extensión de los signos clínicos de la dermatitis atópica y la gravedad de sus síntomas

Es precisamente por eso que Legit.Health ha elegido este sistema de puntuación como base para su algoritmo revolucionario. En otras palabras: el SCORAD se convierte en el marco para automatizar la puntuación de la enfermedad con aprendizaje profundo. Sin embargo, el SCORAD tradicional lleva un conjunto de problemas y limitaciones

Los sistemas de puntuación como SCORAD y EASI tienen una variabilidad interobservador y son consumidores de tiempo. Un enfoque automatizado de IA como el nuestro puede ayudar a reducir este sesgo y, por lo tanto, ser un criterio más preciso y objetivo

Alfonso Medela, Taig Mac Carthy, S. Andy Aguilar Robles, Carlos M. Chiesa-Estomba, Ramon Grimalt, Automatic SCOring of Atopic Dermatitis Using Deep Learning: A Pilot Study, JID Innovations, Volume 2, Issue 3, 2022, 100107, ISSN 2667-0267, https://doi.org/10.1016/j.xjidi.2022.100107.

Así como eso, llenar la hoja ha demostrado ser demasiado tedioso para algunos dermatólogos. En muchos casos, los médicos consideran que el esfuerzo de llenar el SCORAD es demasiado alto y terminan no usándolo en su práctica clínica diaria. Esta puede ser la principal razón detrás de la popularidad del EASI, que sacrifica la granularidad en beneficio de convertirse en un sistema de puntuación más simple y rápido.

ASCORAD mejora las propiedades clinimétricas del SCORAD y se convierte en una mejor medida de resultado.

Alfonso Medela, CAIO

¿Cómo sabemos si un sistema de puntuación es bueno?

Cuando se trata de evaluaciones dermatológicas, la efectividad de un sistema de puntuación es primordial. Pero, ¿qué es exactamente lo que hace que un sistema de puntuación sea fiable y útil? A través del consenso científico, se han identificado varios factores clave que contribuyen a la robustez de estas escalas. Vamos a profundizar en los elementos cruciales:

  • Facilidad de uso: Este factor considera si el sistema puede aplicarse sin esfuerzo dentro de las limitaciones de tiempo y recursos financieros. Que un sistema sea fácil de usar es crucial para su adopción generalizada en entornos clínicos.
  • Sensibilidad al cambio: Un sistema de puntuación efectivo debe ser capaz de detectar cambios clínicamente significativos a lo largo del tiempo. Esta sensibilidad asegura que cualquier progreso o deterioro en la condición de un paciente se captura con precisión.
  • Fiabilidad interobservador: Esto se refiere a la consistencia de los resultados cuando diferentes observadores utilizan el sistema de puntuación. Una alta fiabilidad interobservador significa que diferentes dermatólogos llegarán a conclusiones similares, mejorando la credibilidad del sistema.
  • Variabilidad intraobservador: Esto analiza la consistencia de los resultados cuando el mismo observador utiliza el sistema de puntuación varias veces. Una baja variabilidad intraobservador indica que el sistema proporciona resultados similares todas las veces que un mismo dermatólogo evalúe un mismo caso.
  • Interpretabilidad: Un sistema de puntuación práctico debería proporcionar interpretaciones cualitativas significativas de sus puntuaciones, como categorizar la gravedad de una condición como leve, moderada o severa.

Estos criterios no solo aseguran la efectividad del sistema de puntuación sino también su aplicabilidad y fiabilidad en diversos escenarios clínicos.

Adaptado de "Methods and definitions to rate the quality of outcome measures". Schmitt, J., Langan, S., Deckert, S., Svensson, A., von Kobyletzki, L., Thomas, K., & Spuls, P. (2013). Assessment of clinical signs of atopic dermatitis: A systematic review and recommendation. Journal of Allergy and Clinical Immunology, 132(6), 1337--1347. doi:10.1016/j.jaci.2013.07.008.

6 maneras en que ASCORAD es mejor

ASCORAD se define como:

(...) un método alternativo rápido y objetivo para la evaluación automática de la dermatitis atópica con gran potencial, ya logrando resultados comparables a la evaluación de expertos humanos, mientras reduce enormemente la variabilidad interobservador y es más eficiente en tiempo. ASCORAD también podría usarse en situaciones donde las consultas presenciales no son posibles, proporcionando una evaluación automática de los signos clínicos y la superficie de la lesión.

Puntuación Automática de la Dermatitis Atópica usando Aprendizaje Profundo (ASCORAD): Un Estudio Piloto.

Los algoritmos de Legit.Health califican automáticamente las lesiones solo mirando imágenes de smartphones y pequeñas medidas de resultado informadas por el paciente (PROMs). En otras palabras: la herramienta rellenará automáticamente la mayoría de los sistemas de puntuación dermatológicos, como PASI, SCORAD, UAS, GAGS, y muchos más.

El objetivo principal de ASCORAD es proporcionar una herramienta para registrar datos de manera precisa y consistente para evaluaciones rutinarias y estudios clínicos.

1. Es auto supervisado: el algoritmo asegura que es dermatitis atópica

Cuando se usa el ASCORAD, los profesionales médicos están evaluando el diagnóstico de la patología mientras estiman la gravedad. Esto significa que si el ASCORAD no es el sistema de puntuación correcto porque realmente no es dermatitis atópica, la herramienta le hará saber al médico que puede haber una discrepancia.

La herramienta de Legit.Health no solo mide la gravedad de la afección como lo hace el SCORAD, sino que el algoritmo ha sido entrenado utilizando la entrada de los mejores médicos en su campo para poder distinguir entre cientos de condiciones, la mayoría de los tipos de dermatitis incluidos.

Esto significa que ASCORAD no confundirá un caso de dermatitis atópica con algunos de los sospechosos habituales de diagnóstico erróneo, como la neurodermatitis o la dermatitis seborreica, mejorando la tasa de diagnóstico correcto del médico en un 23%.

2. ASCORAD es más fácil de usar que SCORAD y EASI

El sistema [tradicional] SCORAD lleva tiempo y incluso los dermatólogos experimentados requerirán siete (7) minutos en total. Un médico inexperto necesitará 10 minutos.

Oranje, A. P., Glazenburg, E. J., Wolkerstorfer, A., & de Waard-van der Spek, F. B. (2007). Practical issues on interpretation of scoring atopic dermatitis: the SCORAD index, objective SCORAD and the three-item severity score. British Journal of Dermatology, 157(4), 645--648. doi:10.1111/j.1365-2133.2007.08112.x

En comparación, usar el ASCORAD solo lleva 23 segundos para obtener la puntuación final, y la mayor parte de ese tiempo se consume en tomar la foto. Además, dicha puntuación y la imagen de la que proviene están ordenadamente archivadas y etiquetadas para futuras evaluaciones.

ASCORAD estima la superficie afectada y la intensidad de todos los signos visuales de la enfermedad simultáneamente, mejorando la eficiencia de ambas tareas.

Do you want to see the clinical AI technology in action?

En general, ASCORAD ayuda a practicar dermatología basada en evidencias, liberando a los médicos del tedioso cálculo del SCORAD, permitiendo a los pacientes seguir la gravedad de la dermatitis atópica de una manera amigable y objetiva, y permitiendo una evaluación más precisa de nuevos tratamientos.

3. ASCORAD tiene la mayor sensibilidad al cambio

La herramienta de Legit.Health identifica patologías utilizando sistemas de puntuación validados que tienen:

  • La Diferencia Mínima Importante (MID) más baja
  • El Cambio Detectable Más Pequeño (SDC) más bajo
  • Mayor validez y fiabilidad

Además, los algoritmos proporcionan datos adicionales con propiedades clinimétricas comparables y mayor sensibilidad al cambio y MIDs, gracias al funcionamiento intrínseco de los algoritmos de visión por computadora.

4. La menor variabilidad interobservador

De hecho, el sistema de puntuación SCORAD es representativo y bien evaluado, pero muestra, como todos los demás sistemas, desacuerdos intra e interobservador. La variación en las puntuaciones es de aproximadamente el 20%.

Oranje, A. P., Glazenburg, E. J., Wolkerstorfer, A., & de Waard-van der Spek, F. B. (2007). Practical issues on interpretation of scoring atopic dermatitis: the SCORAD index, objective SCORAD and the three-item severity score. British Journal of Dermatology, 157(4), 645--648. doi:10.1111/j.1365-2133.2007.08112.x

Los resultados experimentales muestran que ASCORAD puede lograr un error porcentual absoluto medio del 8%, superando a los métodos de referencia y por debajo de la variabilidad interobservador del 20%.

5. Cero variabilidad intraobservador

La naturaleza digital del sistema ASCORAD elimina completamente la variabilidad intraobservador, ya que cada imagen y cálculo se almacena en la base de datos de la aplicación.

Permitir que el médico no dependa de su memoria al evaluar la gravedad de la afección y centrarse en el análisis de los datos objetivos almacenados en la aplicación reduce considerablemente el riesgo de recordar mal, proporcionando una manera más objetiva, precisa y precisa de rastrear el desarrollo de la enfermedad.

6. Mejor interpretabilidad

Legit.Health proporciona una interfaz fácil de leer que da acceso al médico a toda la información relevante sobre el paciente de un vistazo.

Cada dato derivado del ASCORAD se muestra claramente en la pantalla, proporcionando la gravedad de la afección, los diferentes factores considerados al analizar la imagen y sus puntuaciones, y un gráfico de evolución a lo largo del tiempo que sigue la efectividad del proceso de curación del tratamiento muy fácilmente.

Además, cada foto del historial del paciente es fácilmente accesible, proporcionando un registro de imágenes donde el algoritmo resalta automáticamente las áreas afectadas.

ASCORAD: El sistema automático de puntuación de la dermatitis atópica de
próxima generación

Captura de pantalla de la aplicación https://legit.health

En conclusión

El revolucionario ASCORAD representa el futuro de la dermatología. Permite a los médicos de todo el mundo practicar medicina basada en evidencias utilizando la mejor herramienta durante el diagnóstico de enfermedades mientras mejora la comunicación efectiva entre médico y paciente.

El uso de algoritmos que estiman la gravedad de la dermatitis atópica rellenando el SCORAD y puntuando automáticamente las lesiones solo mirando imágenes de smartphones aumenta la tasa de diagnósticos correctos de los médicos en un 23% y mejora el seguimiento del tratamiento al hacer que el paciente participe más activamente en su propia recuperación.

Consigue acceso

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Doctor burnout: 6 simple ways Legit.Health helps reduce it

· 10 min de lectura
Andy Anguilar
CEO at Legit.Health

Doctor Burnout

Introduction

In the healthcare sector, a silent but pervasive challenge impacts the well-being of those at the frontline of patient care. This challenge is doctor burnout, a state of physical, emotional, and mental exhaustion caused by prolonged stress in the medical profession. The repercussions of doctor burnout extend beyond the healthcare providers; they also affect the quality of care received by patients.

At Legit.Health, we recognize the critical importance of supporting healthcare professionals. Our dedication to enhancing the lives of doctors and patients is reflected in our advanced artificial intelligence technology. Designed to streamline clinical workflows, our AI tools aim to alleviate the daily pressures faced by physicians, promoting a more sustainable work environment and better patient outcomes.

Traditional consultation
8 medical acts per hour

Doctor consultation

With Legit.Health
52 medical acts per hour

Doctor remote

Doctor burnout, a serious problem

Doctor burnout represents a significant and complex issue within the medical community. The World Health Organization defines burnout as an occupational phenomenon characterized by chronic work-related distress. It includes emotional exhaustion and irritability, a gradual loss of empathy and an increase in negative feelings such as cynicism, and a sense that your own professional effectiveness is rapidly decreasing.

This pervasive issue transcends borders, cultures, and languages, suggesting that its roots are deeply embedded in the fundamental nature of medical practice. It's not only a matter of individual well-being but also of the efficiency and effectiveness of healthcare systems globally.

While completely eradicating doctor burnout may not be immediately feasible, it is imperative for the medical community and society at large to address the cultural, social, and economic factors contributing to this crisis. As a part of this community, it is our responsibility to critically evaluate and actively work towards mitigating the causes of this widespread concern—a concern that directly impacts the backbone of our healthcare systems and, consequently, our overall societal health.

A bad situation, made worse by COVID-19

The challenge of doctor burnout, already significant prior to COVID-19, has been dramatically intensified by the pandemic. This global health crisis has pushed the medical community to unprecedented limits, further amplifying issues that were already present.

Doctors have long faced intense work hours, emotional and physical fatigue, and a sense of powerlessness within a system that can often feel unwieldy and unsupportive. The pandemic has undone many of the strides made in recent years to manage doctor workloads and improve overall well-being. A startling statistic reveals the depth of this crisis: three in five doctors report feeling depleted at the end of a workday, and 44% describe their work as emotionally draining.

Subjecting healthcare professionals to such relentless stress not only endangers their health but also poses severe risks to patient care and safety. While tackling the systemic roots of this issue remains a long-term goal, immediate and effective strategies are essential to alleviate the burden on doctors and mitigate the consequences of burnout.

Do you want to see the clinical AI technology in action?

6 Ways Legit.Health reduces doctor burnout

At Legit.Health, we provide a groundbreaking Clinical Data and Communication Tool tailored for modern dermatologists. This tool is designed not just to simplify clinical tasks but to empower patients in their care journey. Below are six key ways our platform reduces the stress and workload contributing to doctor burnout.

Legit.Health is the revolutionary Clinical Data and Communication tool for Next-generation dermatologists that triples the empowerment of patients.

The purpose of deep learning algorithms used in Legit.Health is to help doctors make an informed decision, putting all the processing power and stored data of a cutting-edge computation at the service of the physician's performance.

Legit.Health's algorithms automatically grade lesions just by looking at smartphone images and small patient-reported outcome measures (PROMs). In other words: the tool will automatically fill in most of the dermatology scoring systems, such as PASI, SCORAD, UAS, as well as estimate the pre-malignancy of any lesion.

How does this revolutionary tool for next-generation doctors work?

1. Minimize the time spent on menial tasks

One of the main causes of doctor burnout is not having enough quality time with the patients. After all, the doctor has dedicated years of training to be able to help people, and spending time performing tasks that seem unimportant is quite frustrating.

This is especially true in dermatology, where they often need to linger counting lessions or calculating affected area and severity scores instead of actually interacting with the patient. Sadly, to this day, the best the market could offer to doctors looking to make these tasks easier and faster were digital calculators that still require a high degree of attention.

Thanks to Legit.Health, that has changed, as the new algorithmic artificial intelligence tool can diagnose a pathology and determine its severity in less than 23 seconds, reducing the burnout in doctors who want to focus on the person in front of them.

Our deep learning algorithms offer enhanced decision support for dermatologists. By leveraging advanced computational power and a vast repository of data, Legit.Health assists doctors in making more informed, efficient diagnoses and treatment plans.

2. Reduce time spent generating a paper trail

Many doctors feel that to keep up in their field and carry on with a successful career, they need to be published in top journals. This frustration forces them to carry out the complex clinical trials that push the borders of scientific progress beyond what could be imagined a decade ago.

However, the lack of time in the hands of these physicians supposes a problem yet another time, as the requirements to carry on this kind of study often imply a heavy paper trail that must be kept up to date with precise data. This supposes more time spent filling in forms and registering information manually, leading to more doctor burnout.

Legit.Health helps set up both traditional and decentralized clinical trials thanks to its many algorithmic functions such as our pixel-to-CSV converters, automatic patient-reported outcome measures, match inclusion algorithms and dermatology image quality algorithms.

All this technology is put in the hands of the doctor to make the data collecting process not only fast but also more accurate and objective, as the algorithm doesn't hold any of the bias a human might.

One of the standout features is the ability to automatically grade lesions using only smartphone images and patient-reported outcome measures (PROMs). This means Legit.Health's tool can autonomously complete most dermatology scoring systems including PASI, SCORAD, and UAS, and also assess the pre-malignancy of lesions.

3. Makes communication with the patient easier

Another of the causes of doctor burnout is the perception of a loss of connection with the patient and their needs, as many physicians feel like they are forced to focus on data and statistics and not on the human side of the trade.

It is a well-known fact that the communication between doctor and patient is one of the cornerstones of modern medicine, and the efforts to make that communication more fluid and effective should not fall on the physician's shoulders alone.

That's why one of the biggest focuses of Legit.Health is streamlining the communication by making the process as smooth as possible, connecting patient and doctor through an app that allows for messages, pictures, and requests not only to be filled in remotely but also filtered by priority. All this makes the communication happening at the appropriate pace for the physician.

doctors and patients using Legit.Health

Better communication between patients and doctors build better relationships

Do you want to see the clinical AI technology in action?

4. Makes the pressure of over-specialization less impactful

The medical profession demands an extraordinarily high level of specialization, with many cases requiring in-depth knowledge not just in a general field, but in very specific conditions. This need for specialization can be particularly burdensome for primary care physicians who often encounter a broad spectrum of diseases, yet may lack the specialized knowledge for accurate diagnosis and treatment.

Legit.Health effectively bridges this gap by providing doctors with access to the consolidated expertise of leading specialists in various diseases. This is coupled with the robust processing capabilities of our deep learning algorithms, offering a swift and reliable source for second opinions.

This feature proves invaluable for primary care doctors, who can utilize Legit.Health to gain quick, objective insights akin to consulting with a specialist, without the time-consuming process of referring to extensive manuals. Dermatologists also benefit when they encounter conditions outside their specific area of expertise, enabling them to use our tool as a trustworthy resource for confirming diagnoses.

Ultimately, by equipping physicians with this level of support and knowledge, Legit.Health significantly alleviates the overwhelming pressure to be an expert in all areas, thus contributing to the reduction of doctor burnout.

5. Comply with applicable regulations, including GDPR

One of the biggest causes of doctor burnout is having to deal with nonmedical matters such as regulations, as many feel they didn't devote their life to the practice of medicine to then expend their limited time and energy on such comparatively menial matters.

Of course, despite not being a very appealing job, taking care of regulations, normative and patient data are crucial for the proper workflow of a medical centre, and it's a task that someone should take care of.

That's why at Legit.Health we have put a strong focus on making it easier to comply with all those regulations, being the GDPR the best example of how we approach data protection and how we take this work off the shoulders of doctors, so they can focus on what's important.

Hospitals are privacy and GDPR compliant with Legit.Health's artificial intelligence

Do you want to see the clinical AI technology in action?

6. Reducing the number of patient complaints

Lastly, we have to consider the pressure patient complaints put on the back of the doctors. They are of course a valuable tool to avoid bad practices and gather feedback, but often the fear, lack of knowledge or a misunderstanding can be the cause of a complaint that could be avoided.

The strain this puts on physicians contributes to the burnout effect greatly, and the solution to it is clear: to reduce the number of complaints, not by making it harder for the patients to speak their voice, but by reducing the instances where those complaints must not rise.

A better informed and more satisfied patient is less likely to misunderstand or misrepresent a situation, thus improving the patient's experience, we reduce the stress on the doctor.

Legit.Health strives to improve the communication between patient and doctor, making the patient feel understood and in control. Better informed patients make better decisions, take their treatment more seriously, and trust their doctor more.

In conclusion

When we set ourselves to the task of creating the perfect tool to have an impact on our users' quality of life, we did it with both patients and doctors in mind.

We have taken into account the experiences of doctors and the extensive literature produced about this topic in the last years to develop our software so it makes the life of the doctors who use it easier and less stressful.

The main objective is, and will always be, to improve the performance of the doctor and to increase the patient's quality of life.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Creating a brand-new scoring system, the 6 key steps every scientist should follow

· 9 min de lectura
Taig Mac Carthy
Co-founder at Legit.Health
Alfonso Medela
CAIO at Legit.Health

Introduction

Scoring systems are the unsung heroes of day-to-day dermatological practice. Disliked by many for the additional work they can bring to the table, they help train the clinical eye, bring a more evidence-based approach to the clinical practice and provide valuable endpoints in research.

There's no denying the crucial role scoring systems play in the development of the clinical field, as they are essential tools that bring precision, objectivity and reliability to clinical trials.

To better use and understand the tools at our disposal, we have to start at the beginning:

What is a Dermatological scoring system?

In Dermatology, a scoring system is a methodology that allows the doctor to assess the severity of a condition by observing and quantifying objective parameters such as redness, the affected area, the quantity and density of lesions, and so on.

The main goal of a scoring system is to provide a tool that documents data precisely and consistently for routine evaluations and clinical studies.

Some of the most used scoring systems in dermatology include:

Now that we know what scoring systems are, let's delve deeper:

What is the latest in dermatological scoring systems?

There have been very recent advancements in dermatological scoring systems, and in fact we are in the midst of a major paradigm shift.

Although many doctors still use the traditional versions of these scoring systems, many key opinion leaders of the dermatological world are pushing for digitalization and automation of the task of scoring the severity, allowing greater precision, reliability and objectivity to the measurements.

Some notable examples include:

This paradigm shift is not exempt from controversy. Indeed, many HCPs prefer to stick to the traditional pen-and-paper scoring systems. However, an increasing number of practitioners are embracing the power of artificial intelligence. Watch this video where one of the creators of the SCORAD, Professor Jean-François Stalder, interacts with one of the creators of the automatic versions of the ASCORAD, Mr. Taig Mac Carthy.

Clips extracted from the event "Artificial intelligence: what future for eczema patients?" organised by the Pierre Fabre Eczema Foundation on Sep 14, 2023

¿Cómo sabemos si un sistema de puntuación es bueno?

Cuando se trata de evaluaciones dermatológicas, la efectividad de un sistema de puntuación es primordial. Pero, ¿qué es exactamente lo que hace que un sistema de puntuación sea fiable y útil? A través del consenso científico, se han identificado varios factores clave que contribuyen a la robustez de estas escalas. Vamos a profundizar en los elementos cruciales:

  • Facilidad de uso: Este factor considera si el sistema puede aplicarse sin esfuerzo dentro de las limitaciones de tiempo y recursos financieros. Que un sistema sea fácil de usar es crucial para su adopción generalizada en entornos clínicos.
  • Sensibilidad al cambio: Un sistema de puntuación efectivo debe ser capaz de detectar cambios clínicamente significativos a lo largo del tiempo. Esta sensibilidad asegura que cualquier progreso o deterioro en la condición de un paciente se captura con precisión.
  • Fiabilidad interobservador: Esto se refiere a la consistencia de los resultados cuando diferentes observadores utilizan el sistema de puntuación. Una alta fiabilidad interobservador significa que diferentes dermatólogos llegarán a conclusiones similares, mejorando la credibilidad del sistema.
  • Variabilidad intraobservador: Esto analiza la consistencia de los resultados cuando el mismo observador utiliza el sistema de puntuación varias veces. Una baja variabilidad intraobservador indica que el sistema proporciona resultados similares todas las veces que un mismo dermatólogo evalúe un mismo caso.
  • Interpretabilidad: Un sistema de puntuación práctico debería proporcionar interpretaciones cualitativas significativas de sus puntuaciones, como categorizar la gravedad de una condición como leve, moderada o severa.

Estos criterios no solo aseguran la efectividad del sistema de puntuación sino también su aplicabilidad y fiabilidad en diversos escenarios clínicos.

Adaptado de "Methods and definitions to rate the quality of outcome measures". Schmitt, J., Langan, S., Deckert, S., Svensson, A., von Kobyletzki, L., Thomas, K., & Spuls, P. (2013). Assessment of clinical signs of atopic dermatitis: A systematic review and recommendation. Journal of Allergy and Clinical Immunology, 132(6), 1337--1347. doi:10.1016/j.jaci.2013.07.008.

Do you want to see the clinical AI technology in action?

How can you create a new scoring system?

Developing a new dermatological scoring system is a complex but rewarding endeavour. By following these key steps and incorporating cutting-edge technology, scientists can significantly contribute to the field of dermatology, enhancing diagnosis and treatment outcomes.

Here's a list of steps you can follow to create a scoring system:

1. Identify a need

The first step is to identify a need. You may look for instances where determining the severity of a condition has a high degree of subjectivity. You may also seek to automate scoring systems that are very tedious to fill in. Most importantly, it is useful to look for situations where patients are suffering due to a lack of access to a specialist who is capable of measuring the severity.

All these instances create an opportunity to innovate. This is perfectly conveyed by Professor Ramon Grimalt, who explains the motivation that led him and his collaborators to create a new scoring system for dermatitis:

In this video (in Spanish), Dr Ramon Grimalt and Alfonso Medela, both co-authors of the ASCORAD scoring system, explain the need that pushed them to create a new scoring system for atopic dermatitis.

Through this project, it has been possible to create, for the first time in history, an artificial intelligence system that is in charge of this work. We are very satisfied with the results that will allow clinical trials and more precise diagnoses.

Dr. Ramón Grimalt

Even before starting the development process of a new scoring system, the researchers at Legit.Health make sure they are addressing an actual need. Staying up-to-date with the state of the art in dermatology and extensively reviewing the pertinent literature is a key step before any research project.

2. Selecting the dataset

As is often the case in medical science, one of the biggest issues our researchers have to face is selecting an optimal dataset. To do this correctly, there are some crucial things to consider:

Collaborate with experts

Collaboration with dermatologists and other experts is vital. Their insights help tailor the system to real-world needs. Simultaneously, gather a comprehensive dataset encompassing a wide range of cases and variations within the disease spectrum. This dataset will form the foundation of your scoring system.

Establish annotation and assessment protocols

Develop clear guidelines for annotating and assessing lesions or other dermatological features. This could involve detailed criteria for lesion count, size, color, or other relevant factors. Ensuring consistency in these initial stages is crucial for the system's reliability.

Regarding the quantity of images, as a rule of thumb, the more parameters we want to include in the new scoring system, the more images we need to have in the dataset. But of course, the more images the better.

Explanation of Hives Identification

Explanation of how the artificial intelligence identifies hives in urticaria images.

One trick that may help you to better optimise the usage of the dataset is to start using the images gradually, looking for the moment when the results stabilise, thus deciding the dataset size as you gather it, so that you don't fall short or use too many images.

3. Building a model

This step is somewhat difficult to cover in this article, but right below you will find a scientific publication where we detail how we trained a model for hidradenitis suppurativa.

Publication of the automatic version of the IHS3 in the journal Skin Research and Technology.

Select the most impactful clinical signs

All scoring systems look at clinical signs. However, not all of them contribute equally to the affectation of the patient. That is why a key step in building a model is selecting the most relevant clinical signs, and looking for the optimal combination.

Often, for each condition, you can find several pre-existing scoring systems, each one with some strengths and weaknesses. It is by analysing them that we can find out which parameters are the most important ones for the condition

Alfonso Medela CAIO at Legit.Health

For example, in the case of acne, the literature suggested that aside from the count of lesions (a parameter that showed in every other scoring system), the density of lesions was also noted as a very prominent sign of a severe condition.

The selected parameters will then be measured and identified in a selection of clinical pictures, by specialized doctors who assist in this process. These values will be compared with those of the gold standard scoring system for that same array of images.

This allows researchers to correlate the values of the previously existing method with the newly defined variables.

4. Optimising the model

Once the researchers have all the parameters defined, it is time to create an equation that combines them all to best represent the severity of the different clinical images used in the study.

This is known as an optimisation problem, a mathematical term that describes the process of finding the best possible solution to a specific problem: in this case, how to represent the severity of a condition.

Do you want to see the clinical AI technology in action?

Without delving too deep into the mathematical intricacies of the process, different combinations of operations are tested on the parameters: adding, subtracting or multiplying them to obtain a single combined value that represents the severity of the condition.

Then, the results of each of these proposed equations for every single image in the set are compared with the results given by the selected gold standard, looking for the best possible correlation with the previously existing problems.

5. Prove it works

Validation is key. Test the system against both interobserver and intraobserver variability. Use statistical measures like the F1 score, mean absolute error (MAE), and Krippendorff alpha to assess the system's reliability and accuracy. This step might involve multiple iterations to fine-tune the system.

This is done with a subset of clinical pictures that have not been used to optimise or train the model in the previous steps. After all, your equation has been created to perform perfectly when tested against those images, so to demonstrate that it can work with any picture of the condition, we have to test it with some new ones.

APASI, A dermatological scoring system

APASI, the most advanced dermatological scoring system for psoriasis

Simply put, our researchers work closely with specialised doctors to label the images using both the gold standard method and the newly developed model and will compare the results to see if the new model performs better than the original one and still finds a correlation with it.

6. Put it into practice in a clinical environment

Finally, the model is brought to the forefront of medical experimentation and compared with the results of dermatologists observing the same affection in clinical practice.

Continuous monitoring and feedback from users will provide valuable insights for ongoing improvement. The system should evolve with advancements in dermatological knowledge and technology.

CADx System Report

Caption of a full report from the CADx system. The chart at the top right shows the evolution of the urticaria, by plotting the AUAS scores across time.

This step is key to ensure that the method can keep up with the reality of the day-to-day practice of medicine, as a good and reliable scoring system is not only more objective and less error-prone than the clinical eye but also needs to be fast and not overload doctors with more work.

That's why at Legit.Health we link our scoring systems to computer vision algorithms, to put the speed and precision of artificial intelligence in the hands of doctors and help them help their patients.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

When the AI analyses a picture, is that considered a medical act?

· 6 min de lectura
Andy Anguilar
CEO at Legit.Health
Taig Mac Carthy
Co-founder at Legit.Health

Have you ever wondered how to deal with reimbursement when using Legit.Health? Let's explore why the act performed by our artificial intelligence is a reimbursable medical act.

Patient sending picture to a doctor

Short answer: yes

Yes, every time a patient sends a photo of their disease, and Legit.Health's artificial intelligence finds a disease or measures its severity, this constitutes a medical act, as defined in HL7's FHIR standard and the Medical Code of Ethics of most countries.

Keep in mind that Legit.Health's artificial intelligence searches for conditions and measures the degree of affectation of the patient on behalf of the doctor. Furthermore, there is a doctor indirectly involved in this process, who must confirm the diagnosis and make the final medical decision.

That is why Legit.Health reduces the amount of work that each medical act bears, while still being a reimbursable medical act. If you want to understand why dermatological artificial intelligence performs medical acts, we encourage you to read the long answer.

Long answer

Medical act by definition

The best way to decide if x is y, is by looking at the definition of y and checking if x matches the parameters of the definition. So let's start by reading the definition:

A medical act is any lawful activity, carried out by a legitimately trained medical professional (...) aimed at curing a disease, alleviating a disease (...) by direct and indirect means.

As you can see, this definition includes three requisites that an act must meet to be considered a medical act. These requisites are: it must be lawful, it must be aimed at curing or alleviating disease and it must be performed by a medical professional, directly or indirectly.

Let's analyse each requisite one by one and explain how Legit.Health meets them. As you will see, it is a medical device by definition.

1. It must be lawful

Yes. When an organisation uses Legit.Health's artificial intelligence, they are engaging in a lawful activity. Legit.Health is a medical device that is CE-marked and complies with all applicable regulations. To learn more about this topic, feel free to request a copy of our CE Declaration of Conformity.

2. It must be aimed at curing or alleviating disease

Yes, and this is somewhat self-evident. When an organisation deploys Legit.Health's dermatological artificial intelligence, it's a step in a healthcare process that is primarily aimed at helping patients who suffer from a condition. In fact, no one except healthcare providers can use our solution.

3. It must be performed by a medical professional, directly or indirectly

Yes, but this one is trickier. Medical acts can only be performed by medical professionals. But Legit.Health is a device, not a medical professional. Then, how can it be a medical act? The key is that the definition of a medical act also covers the clinical interactions in which the physician partakes indirectly.

Legit.Health is classified as a clinical decision-support tool aimed at helping medical professionals during the diagnosis of diseases. That is why the device only classifies conditions on behalf of the doctor who is caring for a patient. Furthermore, this doctor is indirectly involved in the process and must confirm the diagnosis and make the final medical decision.

But wait... can it be automatic?

Yes. To the best of our knowledge, whether or not something is a medical act is not determined by the effort or the time it takes to carry it out. Furthermore, it seems unnecessarily wasteful to force doctors to invest time and effort in a situation that does not demand it. That is why reimbursement policies should not penalize medical acts that are quicker to perform.

The key to whether or not something is a medical act is applying practitioners' skills and knowledge towards helping patients. Legit.Health is a convolutional neural network that gathers the consensus of a large group of doctors, who transmit their knowledge to artificial intelligence, and then apply this knowledge to help patients. It just so happens that it does it so quickly and effortlessly -- and that's no reason to disqualify it from being a medical act.

Hold on... can it be remote?

Yes. Again, we could not find a definition that requires care to be in person.

In our case, Legit.Health is a computer visión CNN that can find diseases by looking at images. Images can be taken from home and sent through the internet. Thanks to this, in some cases the trip to the consult is unnecessary - and that's no reason to disqualify it from being a medical act.

The medical act is not defined by the time and effort it bears nor the presence of the doctor and the patient in the same room, but the application use of the practitioner's skills and knowledge towards helping the patient.

Medical act by process

Every time a patient sends a photo, it's processed by the algorithm. This automatically generates a Diagnostic Report, as defined by the international HL7 organization. This report is a collection of data presented in a clinically relevant way that helps the doctor make a faster, more objective and more accurate diagnosis.

The data outputted by the algorithm triggers a clinical workflow, sends information to the patient and the doctor, and enables care continuity. This constitutes an Encounter, and thus a medical act.

There are two points we want to stress regarding this topic. First and most importantly, Legit.Health is a clinical support tool that doctors use to care for patients (as opposed to being used by patients without a doctor's intervention). Therefore, the very nature of the tool is to help doctors carry out the diagnostic or therapeutic process.

The use of applications for the telematic follow-up allows the flow of information between doctor and patient without the need for face-to-face consultations, adjusting it to a more real-time and allowing changes in the therapeutic attitude more quickly and effectively.

Dr. Elena Sánchez-Largo, Torrejón Hospital

Additionally, the algorithm has been trained using the consensus and combined experience of the top doctors in the field, and therefore it represents the criteria of legitimately trained medical professionals. Thus, the use of the app is often compared to the doctor asking a colleague for a second opinion on a case. The only difference is that, thanks to Legit.Health, they can do it automatically for every patient, taking only seconds to do so.

Traditional consultation
8 medical acts per hour

Doctor consultation

With Legit.Health
52 medical acts per hour

Doctor remote

With all things considered, it is easy to see how Legit.Health changes the paradigm. Allowing to simultaneously increase the number of medical acts a doctor can perform while reducing the work and time each of them takes.

We are aware of the technical, administrative and economic differences between a face-to-face medical act and an automatic or remote medical act. We aim to eliminate unnecessary video calls, improve the reliability of the information that reaches the doctor, and turn telemedicine into an efficient, profitable endeavour for both the doctor and the healthcare provider.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Automatic Urticaria Activity Score (AUAS): A Novel Technology for Urticaria Severity Assessment Based on Automatic High-Precision Hive Counting

· 6 min de lectura
Taig Mac Carthy
Co-founder at Legit.Health
Alfonso Medela
CAIO at Legit.Health
Ruben Garcia Castro
Ruben Garcia Castro
Dermatologist
Antonio Martorell
Antonio Martorell
Dermatologists and Medical Lead at Legit.Health
Disclaimer

This post is a summary of a scientific publication published in the Journal of Investigative Dermatology (JID) Innovations. We encourage you to read the whole publication, which is embedded below.

Read the paper

We invite you to read the full paper for yourself, or you can scroll down to read the summary in this educational blog post.

Introduction

We introduce AUAS, an automatic equivalent of UAS that deploys a deep learning lesion-detecting algorithm, called Legit.Health-UAS-HiveNet. Our results show that our algorithm assesses the severity of Chronic Urticaria cases with a performance comparable to that of expert physicians.

Furthermore, the algorithm can be implemented into CADx systems to support doctors in their clinical practice and act as a new endpoint in clinical trials.

The real impact of the Legit.Health-UAS-HiveNet in clinical practice resides on the power to support physicians during not only the diagnostic process but also in the monitoring of patients with chronic types of urticaria, by helping them prescribe treatments and increase the adequacy of treatments.

Automatic Urticaria Activity Score (AUAS): A Novel Technology For Urticaria Severity Assessment Based On Automatic High-Precision Hive Counting Regarding clinical trials, the AUAS has the potential of becoming a new clinical endpoint that could increase both the quality and the quantity of data available to researchers.

Regarding clinical trials, the AUAS has the potential of becoming a new clinical endpoint that could increase both the quality and the quantity of data available to researchers.

Automatic Urticaria Activity Score (AUAS): A Novel Technology For Urticaria Severity Assessment Based On Automatic High-Precision Hive Counting

Authors of the publication

Rubén Garcia

Rubén Garcia

Hospital Universitario Fundación Jiménez Díaz

Alejandro Vilas

Alejandro Vilas

Complejo Hospitalario U. de Ferrol

Laura Vergara

Laura Vergara

Hospital Universitario de Toledo

Taig Mac Carthy

Taig Mac Carthy

Department of Clinical Endpoint Innovation Legit.Health

Fernando Alfageme

Fernando Alfageme

Hospital Puerta de Hierro

Ana María González

Ana María González

Hospital de Zamora

Ignacio Hernandez

Ignacio Hernandez

Medical Data Science Legit.Health

Alfonso Medela

Alfonso Medela

Medical Data Science Legit.Health

What is urticaria severity scoring?

Urticaria is a very common disease characterized by erythematous, edematous, itchy, and transient plaques that involve the skin and mucous membranes. It can be classified into subtypes such as acute spontaneous urticaria, chronic spontaneous urticaria, chronic inducible urticaria, and episodic chronic urticaria.

Diagnosis of chronic urticaria is usually performed through clinical observation. In other words: the assessment of the disease's severity is performed through manual scoring systems that are filled in subjectively.

The most commonly used scoring system is the Urticaria Activity Score (UAS), which can also be used for 7 consecutive days, in which case it is referred to as UAS7.

The problem with visual scoring

The most indisputable limitation of manual scoring systems is the inherent difficulty of human beings to quantify parameters in an objective, stable and precise way.

Humans have a limited ability to count hives, quantify the surface area of a lesion or quantify the redness of an area. This human limitation in parameter estimation is also reflected in the effort and time required to complete the urticaria activity questionnaires, which end up being a very unrewarding task for patients and may result in poor adherence.

On the other hand, scoring systems classify disease severity using a limited range of scores, with three or four categories, such as: none, mild, moderate and severe in the case of the UAS. Indeed, questionnaires have a very high minimum detectable change, as they are discrete ranges rather than continuous scales.

And finally, these questionnaires are susceptible to bias. This is especially true in cases where the patient knows that the treatment they receive will be determined by the information they provide. And due to the asynchronous nature of the reported measure, the clinical team lacks the means to ensure that the values reported by the patient are chronologically accurate or simply truthful, which precludes external verification.

The goal of the Automatic UAS

In this work, we propose the Automatic Urticaria Activity Score (AUAS), an automatic version of the objective part of the UAS that applies convolutional neural networks to count hives automatically with high precision.

The goal is to assist clinicians in filling scoring systems such as the UAS in a more objective way and quicker, which could improve health outcomes and provide high-quality endpoints to measure the effectiveness of the treatments for urticaria.

Explanation of Hives Identification

Explanation of how the artificial intelligence identifies hives in urticaria images.

The solution

We trained trained a hive-counting neural network called Legit.Health-UAS-HiveNet.

To make artificial intelligence accessible to the healthcare professional, we developed a fully integrated CADx system, a web application that integrates Legit.Health-UAS-HiveNet algorithm and calculates the patient-based UAS by looking at images taken with smartphone cameras.

The CADx system works in three stages: image and itchiness input, processing of the images, and the creation of a report with the severity assessment.

CADx System Report

Caption of a full report from the CADx system. The chart at the top right shows the evolution of the urticaria, by plotting the AUAS scores across time.

The report can also combine the scores of multiple images uploaded in the same day to provide the global AUAS score.

In other words: if the user uploads pictures of several body parts, the report of the CADx system shows both the local and the global AUAS scores. The global AUAS is calculated by summing the results of all the images processed by the CADx system.

Automatic Urticaria Report

Automatic Urticaria Activity Score

Do you want to see the clinical AI technology in action?

Conclusion

In this work, we have presented the AUAS, the first artificial intelligence that automatically fills in the UAS scoring system by looking at smartphone images. The main advances in this algorithm are reducing the time spent by patients in filling in the manual severity scoring system and standardizing urticaria assessment with reduced inter-observer variability and higher reliability.

We were able to overcome clinical assessment variability by developing a merging algorithm that fuses all experts' annotations to create a consensus.

The AUAS as a scoring system presents improved clinimetric properties, but it also carries the advantage of providing a picture of the lesion along with the severity score, which allows researchers greater oversight of studies. In conclusion, we believe that the AUAS and Legit.Health-UAS-HiveNet has the potential to improve health outcomes, reduce costs, and increase the practice of evidence-based medicine in health organizations.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Are there enough dermatologists for everyone? A hard-to-solve crisis

· 7 min de lectura
Andy Anguilar
CEO at Legit.Health
Alfonso Medela
CAIO at Legit.Health

Years ago Andy Aguilar noticed something wasn't right with her skin. When she visited her doctor looking for a solution, she was met with an ordeal.

She was passed around from specialist to specialist, collecting incorrect diagnosis after incorrect diagnosis and taking the brunt of the consequences of the misguided treatments that came with them as her frustration with her healthcare providers grew.

Each new appointment with a new dermatologist came with its ever-extending waiting period as her symptoms worsened before her eyes.

After several years, many healthcare providers and six different dermatologists later, she found the diagnosis and treatment she needed, but rebuilding the trust in the healthcare sector took much longer.

Like Andy, thousands of patients all over the world face the same hurdle, feeling alone and forgotten by both the public and private healthcare sectors as their chronic condition worsens with each day.

Experts agree: there is a shortage of dermatologists, and this leads to longer waiting times for patients, overworked doctors, untreated conditions, or even patients needing to travel to a different city to get treatment.

Considering the severity of this issue, it is important that the key decision-makers in the medical industry ponder two crucial questions: Why is this happening, and how can we fix it?

Andy went on to found Legit.Health to reduce the number of people who had to live through this kind of ordeal, by helping doctors and medical centres become more efficient, so they can help their patients even better.

Why is it so hard to get a Dermatology appointment?

The truth is that there are not enough dermatologists for all of us. A Spanish patient reports a primary care doctor telling them "I will refer you to the specialist, I hope you have luck and get seen before it is too late" when they went to the medical centre with worrisome spots on their skin.

The demand is growing, the number of doctors is not

One of the main causes of this problem is not related to the number of dermatologists but to their workload.

The rate at which a dermatologist can be trained cannot be cut. Especially in a field as complex as this one, full of rare conditions and fringe cases to keep in mind. Nowadays, a board-certified dermatologist needs 12 years of extensive and specialized training and experience to be able to perform their job.

Meanwhile, the population of dermatologists has kept growing at a reasonable rate, the demand for their attention has skyrocketed in recent years, making the number of consultation requests grow exponentially and overflowing a system that was not ready to assume this growth.

Traditional consultation
8 medical acts per hour

Doctor consultation

With Legit.Health
52 medical acts per hour

Doctor remote

One of the reasons the demand for dermatologists keeps increasing is the wide array of treatments and services they can provide. Dermatology is the field of medicine that focuses on treating the skin, hair, and nails; all usually affected by quite noticeable conditions that affect people's daily lives.

Aside from treating medical conditions for people of all ages, dermatologists can also conduct cosmetic procedures, so their patients can look and feel great, and the demand for this kind of procedure only grows as the years go by.

Do you want to see the clinical AI technology in action?

Another worrying trend in the medical world is the ever-growing amount of time doctors need to spend on menial tasks and the burnout and decline in efficiency it brings. After all, the doctor has dedicated years of training to be able to help people, and spending time performing tasks that seem unimportant can be quite frustrating for the practitioner and a very bad investment for the medical centre.

This is especially true in dermatology, where they often need to linger counting lessons or calculating affected area and severity scores instead of actually interacting with the patient and understanding their reality.

The implementation of new tools, like Legit.Health, which reduces the time spent on these tasks, is a fundamental step to allow dermatologists to use their time more efficiently from both a medical and monetary point of view.

Additionally, the use of this kind of software reduces considerably the feeling of burnout, as access to the best tools will allow doctors to focus on building up the human connection with their patients, letting the algorithms count lesions and calculate surface areas.

The pressure of over-specialization

The medical profession is one of the more specialized fields in the world, as some cases need expert knowledge not only in the field of choice but in the specific disease the patient is suffering.

This over-specialization is an especially impactful problem in the case of primary care physicians, who have to confront a wide range of potential diseases without the tools to properly diagnose or treat them due to a lack of specialized knowledge.

Legit.Health puts in the hands of doctors the consolidated expertise of top experts in each disease, combined with all the processing power of our deep learning algorithms, giving a faster and more reliable second opinion there is.

Pre malignancy prediction with artificial intelligence helps primary care doctors and dermatologists alike

This is useful to both the primary care doctors who will benefit from having access to an objective and fast way of accessing the knowledge of a top dermatologist without investing too much time in consulting manuals, and for the dermatologist who might encounter a disease or lesion out of their expertise and want a reliable tool to confirm their suspicions.

In both cases, the pressure of needing to know it all is reduced, as is the time lost deriving a patient to another doctor or conducting additional tests just to confirm a suspicion.

Do you want to see the clinical AI technology in action?

The dire consequences of this shortage

Every expert in the medical field agrees: if measures are not taken at every level, this shortage will get worse as time passes.

The first consequences of the issue are starting to be felt by medical centres around the world, being patient dissatisfaction the most notorious one. Patients who are frustrated with the slow pace of a waiting list not only might take their business to another healthcare provider, but more importantly, might get the impression that their symptoms might not be important, and forgo completely the search for treatment.

This links with other of the issues caused by these long waiting periods: Conditions that could be easily treated if caught in time, quickly develop into acute cases that will take a bigger effort and resources to treat.

Do you want to see the clinical AI technology in action?

Solutions, step by step

A complex problem like this can't be solved in one single swift action. It takes a complete overhaul of the medical system and how we understand dermatology to change a situation as ingrained as this one.

Nevertheless, we should not succumb to resignation, accepting eternal waiting lists and overworked doctors. There are small changes that can be done that will improve the situation and can be the first steps towards a better future.

One of those solutions is to give doctors the best tools to optimize their time and energy when seeing a patient, making sure they are not overworking themselves with tools developed before the internet existed.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

GE Healthcare and Wayra select the Basque company Legit.Health among the five start-ups focused on AI in health for the first Edison Accelerator Program

· 4 min de lectura
Andy Anguilar
CEO at Legit.Health

The Edison Accelerator provides world-class business and technical guidance to EMEA startups.

Doctor using Legit.Health

MADRID, June 2021 - Five healthcare technology startups have officially upgraded into the first cohort of the Edison Accelerator in EMEA, a healthcare scale-up acceleration program designed by GE Healthcare in partnership with the innovation organization Wayra UK, Telefónica start-up accelerator.

Among the five start-ups that were chosen, there is a Bilbao company: Legit.Health, which is presented as a revolutionary clinical intelligence and communication tool that helps Next-generation dermatologists improve diagnosis, grade severity and monitor the evolution of chronic and malignant wound and skin lesions.

Its technology driven by artificial intelligence (IA) makes it possible to diagnose 232 conditions just by looking at smartphone images and accelerates the communication process of a pathology, by reporting its existence in 32 seconds and automatically estimating its severity by filling in the grading method. Thanks to this solution, the correct diagnosis rate of the doctor could be increased by 23%.

The alliance with GE and Telefónica broadens the scope of technology in order to help doctors in their healthcare work. They are the pillar of medicine, and artificial intelligence is there to help them. Legit.Health is the tool that allows patients and doctors to speak the same language. Our focus is to be able to give doctors all the tools that increase their healthcare capacity and allow to give them greater security.

Andy Aguilar, CEO at Legit.Health

Do you want to see the clinical AI technology in action?

The companies chosen in the program are focused on applying artificial intelligence to medical images to improve the patient experience. The estimations suggest that more than 400.000 European lives could be saved annually by applying AI in healthcare and freeing up 1.800 million hours of doctors to focus on what matters most: the patient.

I'm sure that the Edison Accelerator will become a major player in the HealthTech space in Europe and beyond.

Bruno Moraes, Country Manager at Wayra UK

The future of innovation will be to collaborate across the entire healthcare ecosystem, including start-ups, research centers, hospitals, physicians, and patients. The Edison Accelerator is bringing those stakeholders together in a unique and connected ecosystem to make a real impact by helping to improve outcomes and provide patient care.

Jan Beger, Director Senior de Ecosistema Digital of General Electric Healthcare

Over the next six months, the Edison Accelerator will provide its cohort of five start-ups with the knowledge and skills to help them further scale their business and jointly develop solutions with GE and the other healthcare institutions participating in the program. Intel has also joined the program as a technology partner.

About Legit.Health

Legit.Health is the revolutionary clinical data and communication tool that helps Next generation dermatologists improve diagnosis, rate severity, and monitor the course of chronic wounds and malignant skin lesions. This AI powered technology helps both doctors and patients improve diagnosis, since it helps them improve their mood and emotional quality of life, making them more actively participants in their treatment and reducing loneliness and isolation of the patient.

Our algorithms automatically score pathologies just by simply looking at photos taken with the mobile phone. Filling automatically most medical classification systems such as: PASI, SCORAD, UAS, GAGA and many more dermatological scoring systems. Increasing in this way the correct diagnosis rate of the doctor by 23%.

Do you want to see the clinical AI technology in action?

About GE Healthcare

As a global leader in innovation in medical technology and digital solutions, GE Healthcare enables physicians to make faster and more informed decisions through smart devices, data analytics, applications and services, powered by Edison Intelligence platform. With more than 100 years of experience in the healthcare sector and around 50.000 employees around the world, the company operates at the center of an ecosystem oriented towards the achievement of precision in healthcare, the digitization of healthcare, the contribution and driving productivity and improving outcomes for patients, providers, healthcare systems and researches around the world.

About Wayra

Wayra connects Telefonica and its corporate partners with technology disruptors around the world. We have a clear goal: help start-ups scale globally. Wayra offers a unique and fluid interface between entrepreneurs and our network of companies, governments and other partners, adding value to the ecosystem where we are present. We believe that large corporations can reinvent themselves by working hand in hand with entrepreneurs around the world and helping them scale to fulfill their digital transformation. We are leaders in bringing together corporations and start-ups to generate joint business opportunities.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

6 ways you can avoid GDPR sanctions with Legit.Health

· 6 min de lectura
Andy Anguilar
CEO at Legit.Health
Taig Mac Carthy
Co-founder at Legit.Health

GDPR Legit.Health

Introduction

The real toll of a sanction for infringing the GDPR is magnitudes bigger than the mere financial cost, as it also affects the image of the company and erodes the trust that patients and employees have in the company.

This is especially true in the healthcare industry, where the trust and peace of mind of the patient are paramount for a successful business.

How can a medical centre shield itself against the many drawbacks of a sanction of this kind?

The GDPR is not the problem; The GDPR is the solution.

Taig Mac Carthy, COO at Legit.Health

A sanction epidemic

Since it came into force in May of 2018, the GDPR has claimed more than 120 million euros in fines to companies in Europe alone.

Although this law has ushered in a new era of user data protection and customer rights, the reality is that more likely than not this is just the first of many steps that are to come.

As cybersecurity and the importance of personal data become more widespread ideas among the general public, so do the laws regulating these activities, and although this is true of every industry, the healthcare world will be one of the most affected ones.

A case of study: HM hospitals

In the early days of 2020, a hefty fine to HM hospitals was made public by the AEPD (The Spanish Bureau of Data Protection).

The infraction that was being punished consisted of a violation of the 5th and 6th articles of the GDPR due to mismanagement of a simple entry questionnaire. When designing their form, they broke the existing rule, by not asking for explicit permission to share the data with third parties.

This small slip cost them almost 50.000 euros in the form of a fine, but most importantly it meant a big blow to the image of the company.

If only there was a way of preventing this kind of situation...

How Legit.Health helps you comply with the GDPR

Legit.Health is the revolutionary scientific data and communication tool that represents the future of dermatology. It's the best tool to assist diagnosis and the best ally for doctors in improving the communication between them and their patients. And all that communication happens in a perfectly safe way by GDPR standards.

Thanks to their deep learning computer vision algorithms, slick interface and scientifically backed design, this app not only provides doctors with a state of the art algorithmic diagnosis tool but allows the medical centres to avoid GPDR violations.

This is how.

Do you want to see the clinical AI technology in action?

1. Legit.Health takes care of the data processing for you

The goal of Legit.Health is to help medical centers on their day-to-day, and that includes helping them to properly comply with the GDPR. Two better understand how Legit.Health helps hospitals and clinics, it is important to know the differences between two figures: the Data Controler and the Data Processor.

What is a Data Controler?

The party that determines the purposes and means of the treatment of the data.

What is a Data Processor?

The party that processes the data on behalf of the treatment officer.

This means that, although Legit.Health has no ownership of the data or any kind of decision-making power about what is done with it, Legit.Health takes upon them many of the tasks and responsibilities that would typically only burden the medical center, to make sure the data management is compliant with the latest regulations, assisting with audits, maintaining confidentiality, and so on.

2. An app designed to only process the necessary information

Many of the fines imposed for infringing the GDPR are related to the collection and storage of unnecessary data for a given service. This is prevalent across all kinds of companies but is more important to keep in mind in the healthcare industry, as health data is especially sensitive.

Legit.Health only admits the inclusion of data that is strictly necessary for the service to be provided, making even the accidental leak of non-vital information near impossible.

In addition, the platform clearly identifies and documents the legal basis on which this data has been taken, contributing to avoiding a situation of non-compliance with the GDPR.

Do you want to see the clinical AI technology in action?

3. Easy to access and manage the data

Another common and damming case of non-compliance with the GDPR, that has troubled many healthcare providers, is the handling of requests to access the data, as well as the process of removal.

For example, when a user requests access to its data or demands its deletion, Legit.Health aids the medical center in addressing this request, facilitating the measures regarding all data gathered and stored through the application.

Similarly, to help the client be compliant with the obligation to inform, the platform shows all legally relevant information to users in a concise, transparent, and easy-to-access way while using clear and simple language. This principle is applied especially to consent forms and legal terms, which in and of itself would avoid most fees or sanctions regarding the obligation to inform.

4. Legit.Health takes cybersecurity dead serious

As an expert in managing sensitive information, Legit.Health has in place an impeccable security architecture that guarantees a state of the art security for patients' and doctors' data.

This are some of the ways Legit.Health protects its users

  • Cyphered tokens for user log-ins
  • Authentication protocol with a private key
  • Log-Monitoring and Log-Auditing systems
  • Scanning of the software in search of vulnerabilities

These systems ensure that all the data, the connection, and the communication between Legit.Health and its users are safe and reliable.

Do you want to see the clinical AI technology in action?

5. Fully backed up data at all times

The integrity of the data stored in Legit.Health's servers are held to the highest standards, as all the information is continuously backed up to prevent data loss. Both the backups and the original data are fully cyphered to further ensure the security of the data.

Forget about costly server maintenance and stop worrying about the physical integrity of your information, as the data storage technology used is as safe as it is convenient.

6. A helping hand with audits

At any point, Legit.Health is ready to provide all the information that the medical centers might need to successfully comply with internal or external audit requirements.

By aligning themselves with Legit.Health, medical centers can take advantage of a tool that is fully compliant with the GDPR as well as all other European standards, taking some of the burden and the hard work associated with keeping these matters in check. In other words, your work will be mostly done for you when the time for an audit comes.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Use Case: How Torrejón Hospital implemented A.I. into their workflow to manage patients remotely

· 7 min de lectura
Andy Anguilar
CEO at Legit.Health

dermatology with artificial intelligence

Healthcare provider Ribera Salud and Legit.Health started working together in one of the group's hospitals, the Torrejón Hospital, to implement the revolutionary algorithmic technology that, 2 years later, has shown excellent results.

In 2020, the healthcare provider Ribera Salud and Legit.Health started working together in one of the group's hospitals, the Torrejón Hospital, to implement the revolutionary algorithmic technology that, 2 years later, has shown excellent results thanks to the amazing job done by the doctors.

The pandemic could be a blessing in disguise, as it forced the teams to truly push the possibilities of remote care to new heights. In this particular case, the team at Torrejón Hospital needed to follow up on the patient's treatment but could not ensure all of them could go to the medical centre due to COVID-19.

Under these circumstances at hand, Legit.Health was the perfect tool for the job.

Video Summary

Watch Dr Elena Sanchez Largo's presentation: Artificial Intelligence for Remote Monitoring of Patients With Skin Conditions, where she lays out an overview of how the hospital uses Legit.Health's solution.

Next to Dr Sanchez-Largo, the co-founder of Legit.Health, Taig Mac Carthy, explains some of the key components of the solution, such as the severity measure feature, which automates the filling of scoring systems like PASI or SCORAD.

Do you want to see the clinical AI technology in action?

It is pretty easy to see how a telematic tool like Legit.Health can help to monitor patients remotely. But, how does it manage not to add to the doctor's workload by making them have to worry about yet another system? Let's find out.

First Step: Patient registration

Implementing a new system into an established workflow is a dreaded task for most people. After all, that workflow has been honed and perfected along with years of adjustment and modifications, and including a new element to it can feel like throwing a wrench into a well-oiled machine.

Thankfully, the process of onboarding new patients is both easy and contained in time, as it only needs to happen once.

Once the doctors at Torrejón Hospital had access to their Legit.Health account (a process that barely takes two minutes) they just needed to, as a part of a visit, ask for the Patient's Name, Surname, Email, or Telephone, and input their Pathology information.

Onboarding

The onboarding process only takes part once for each patient.

This process takes no more than a minute, and it only needs to happen once, but if you want to avoid it completely it is possible to avoid this step altogether thanks to Legit.Health's Dermatology API.

In Torrejón Hospital's case, the patients confirmed their account and logged in with their password on the spot, and were instructed by the doctor to check their email or phones for alerts asking them to take pictures for the monitoring.

In total, both doctors and patients have spent around 5 minutes combined to set up this process. And although at Torrejón Hospital the medical team chose to take this process into their own hands, at other centres they leave the patient registration step in the hands of their non-medical teams.

Do you want to see the clinical AI technology in action?

Second step: Follow up

Once the system had been set up, each Torrejón Hospital patient began a continuous use loop, where the follow-up and monitorization process gets simplified by the algorithm into a single decision by the doctors.

Each time a patient uploads a picture, either because the doctor had set an upload pattern for them on their last visit or because they felt like their condition has changed significantly, the algorithm processes the information.

After analysing the image, if the algorithms detect an increase in severity or in the suspicion of malignancy or pre-malignancy, it will flag the picture as urgent and show it to the doctor first.

Continuous use

Brief description of what Doctors and Patients do when using Legit.Health

The doctor then can, at any time, review all the pictures sent to them by their patients, being able to set up a face-to-face consultation if they think is necessary or simply send a message to the patients with indications about the treatment and the upload pattern.

This not only takes a minimal amount of work for the doctor for each patient, but in fact increases the efficiency significantly.

Do you want to see the clinical AI technology in action?

The true heroes of the story

The implementation of new technology is most challenging for doctors, as they are already very busy with the clinical workload. Luckily, the great dermatologists at Torrejón are very innovative professionals, who aim at improving their daily practices by finding better ways to care for patients.

The main conclusion here is that technology comes second, and clinical talent comes first. If the medical team is talented and capable, any solution can flourish. And that is precisely what happened when Hospital U. of Torrejón implemented Legit.Health.

The best results we can show you of how this project has worked, are the words of some of the doctors involved:

Dr Elena Sánchez-Largo

Dra. Elena Sanchez Largo

The use of applications for telematic follow-up allows the flow of information between doctor and patient without the need for face-to-face consultations, adjusting it to a more real time and allowing changes in the therapeutic attitude more quickly and effectively.

Dr. Elena Sánchez-Largo, Torrejón Hospital

Dr Elena Sánchez-Largo has put Legit.Health to work with her Psoriasis patients at Torrejón Hospital, achieving great results.

She reports that 27% of her patients benefited from an early adjustment to their treatment, all thanks to the improvement in the communication between doctor and patient.

You can follow Elena Sánchez-Largo on twitter

Dr Marta Andreu

Dra. Marta Andreu

This telematic follow-up prevented school absences in paediatric patients, work absences in adults, and allowed the follow-up of patients in quarantine due to COVID-19 or with diseases that make it difficult to travel. Both patients and their dermatologists showed a high degree of satisfaction with the use of the app, with 100% of patients interested in continuing to use the tool.

Dr. Marta Andreu, Torrejón Hospital

Dr. Marta Andreu puts into perspective the use of the app at Torrejón hospital, saying it was used in patients of Psoriasis, Atopic Dermatitis, Urticaria, Acne, and Hidradenitis Suppurativa. She highlights the good reception of the app from the patients and how its use improved the satisfaction they had with the medical centre.

You can find Dr. Marta Andreu on LinkedIn.

In future posts, we hope to highlight also the work and talent of their colleagues, such as Dr. Leticia Calzado, Dr. Marta Andreu, Dra. Marta Ruano or Dr. Javier Alcántara, to name a few. Truly highly innovative healthcare professionals who are exploring the best ways of caring for their patients and improving health systems.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

4 Simple Life Quality improvements Legit.Health brings to its users

· 5 min de lectura
Andy Anguilar
CEO at Legit.Health

Introduction

At Legit.Health, our commitment to patients' wellbeing, both physical and psychological, takes us beyond focusing only on product features and algorithm performance. We know that our users are real people with real problems that are trusting us and their doctors, so we can help them overcome a disruptive condition.

This is why we want to outline the ways in which we are trying to improve the life quality of our users.

1. Streamlining the diagnosis process

Figuring out you have a skin condition can be a troublesome and stressful event, especially in the cases of diseases that are not well known by the population. The uncertainty of what might be happening to you adds up to the endless calls, visits to the doctor and tests that make the experience miserable even before you can learn what's exactly happening to your body.

That's why at Legit.Health we aim to speed up and simplify the diagnosis process for both doctors and patients so that the time spent between the discovery of the symptoms and the beginning of the treatment is as short as possible.

This reduces the uncertainty that patients feel, reduces their fears and anxiety associated, giving them the hope of knowing there is a treatment and a fighting chance against the disease and recover their life quality.

Do you want to see the clinical AI technology in action?

2. Improving patients' quality of life

The clinical condition of the patient is crucial for us. But we also believe that it is essential to think about their emotional well-being.

Once the condition is diagnosed, a difficult journey begins for the patient: they have to adapt their routines to the new condition, learn to endure the inconvenient symptoms and bear the burden of stress and social stigma associated with some of these diseases.

During the use of the tool, 27% of the patients benefited from changes in the therapeutic attitude early. All this thanks to the greater interaction of the patient with the doctor in charge.

Dra. Elena Sánchez-Largo, Torrejón Hospital

At Legit.Health, we believe that these hard times in the patient's life shouldn't be made harder by the lack of support, the feeling of isolation or powerlessness. That's why we strive to improve our users' life quality in every way at our disposal.

To achieve this purpose, we work closely with patients associations to better understand the user's needs. By doing so we improve the usability and the usefulness of the app, and we also connect the patients with a community that shares this life-changing experience. This kind of contact has proven to improve the effectiveness of the treatments and makes the patient feel accompanied and understood.

Additionally, we understand that turning the patient into a more active participant in the treatment will empower them, increasing the feeling of control and self-management. The app also reduces the burden on the mental health of the user and helps them acquire better habits and improve treatment adherence, thanks to the frequent alerts it generates.

Besides, the patient can use the app remotely, whenever and wherever they want, which enables them to self-manage the process, empowers them and makes them feel more in control over their disease.

3. Helping them learn about their disease

One of the most common complaints by patients affected by skin diseases is that they feel powerless and uninformed. They perceive the lack of both the proper tools and knowledge to tackle their condition to be demeaning, and they have a difficult time understanding the clinical information their doctors provide, especially when it's presented in a complex way.

Here at Legit.Health we work shoulder to shoulder with patient associations and doctors to produce aids for our users: explaining in simple words how their disease works and giving out tips to lessen the more disruptive symptoms such as itching, thus improving their life quality.

We have this kind of material readily available to both our users and the general public, so everyone can benefit from the shared knowledge of our team and the experts we work with.

4. Improving communication between patient and doctor

One of the biggest obstacles for any successful treatment is the difficulty of communicating the necessary information to the patient in an efficient and accessible way.

It is no secret that many doctors have issues explaining the nuances of their situation or treatment to their patients, who often don't understand why some medical decisions are being taken. That sense of confusion and frustration can lead to a loss of confidence in the physician, or even the search for alternative, less effective, unproven therapies.

Legit.Health strives to improve the communication between patient and doctor, making the patient feel understood and in control. Better informed patients make better decisions, take their treatment more seriously and trust their doctor more.

Do you want to see the clinical AI technology in action?

In conclusion

When we set ourselves to the task of creating the perfect tool to have an impact on our users' quality of life, we did it with both patients and doctors in mind.

We have taken into account patient feedback and will continue to do so in the future as we continue to develop our software in a way that is as convenient for the user as is useful for the doctor.

The main objective is, and will always be, to improve the performance of the doctor and to increase the patient's quality of life.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Legit.Health honored by pharmaceutical giant MSD at the European Patient Digital Health Awards

· 5 min de lectura
Andy Anguilar
CEO at Legit.Health
Alfonso Medela
CAIO at Legit.Health

The ceremony attended by European technology executives aims to promote digital innovation.

Legit.Health awarded at the European Patient Digital Health Awards 2021 by MSD

The European Patient Digital Health Awards (PDHA) ceremony, orchestrated by MSD — known for their innovation in COVID-19 treatment —, recently honored Legit.Health for its groundbreaking work in healthcare technology. Marking a significant milestone, Legit.Health is celebrated as the first Spanish company to clinch the PDHA award, a testament to its commitment to transforming patient care through digital innovation.

Over 60 contenders from 18 European countries were in the running, but it was Legit.Health's novel approach in dermatology that stood out. Their application, capable of identifying over 232 dermatological conditions through a simple smartphone photograph, impressed the jury, which included patient representatives and entrepreneurial experts. The honor specifically recognized their advancement in "New ways to interact with healthcare teams and providers".

The European initiative reinforced the vital role of innovation in healthcare and the evolution of technology, both for patients and for healthcare providers and professionals.

Alfonso Medela, a key figure at Legit.Health, brings personal experience to the table, having managed chronic urticaria since his youth. At only 26, he spearheaded the development of this tech solution, aiming to improve the lives of millions facing similar challenges.

Legit.Health 's platform, employing artificial intelligence (AI) and advanced computer vision algorithms, is more than just a diagnostic tool. It empowers patients by enabling them to autonomously monitor their skin conditions, fostering better communication with healthcare professionals.

AI streamlines routine tasks, allowing doctors to concentrate on the most crucial aspect of healthcare - the patients.

Andy Aguilar, CEO of Legit.Health

These prestigious awards, initiated by influential entities like MSD, are essential in spotlighting the pivotal role of digital innovation in healthcare. They recognize technologies like Legit.Health that aid physicians in making informed decisions, improving patient-doctor communication, and enhancing diagnostic accuracy.

A tool that uses artificial intelligence (AI) and computer vision algorithms to help doctors reach where they cannot. Although, Alfonso Medela, promoter of Legit.Health, explains: "our diagnostic algorithms never replace the doctor, but provide him with valuable information to make a decision". Medela has suffered from chronic urticaria since he was young and, at only 26 years old, he created this technology to alleviate the problems of millions of people in his situation.

This platform is presented as a device for doctors and patients based on Deep Learning and computer vision algorithms, which allow the detection and monitoring of skin conditions. Helping doctors in their diagnosis, and patients empowering them so they can be autonomous in the monitoring of their skin pathology, improving like this communication with the professional.

Technology was born to stay and help physicians perform all those routine and administrative tasks that impeded them from providing personalized patient care. Andy Aguilar, CEO of Legit.Health and patient with several chronic skin diseases, says: "Artificial intelligence helps to perform all those tasks that can be automated so that the doctor can focus on what is most important: the patient".

Awards like this, organised by important establishments like the pharmaceutical company MSD, are necessary to highlight the importance of innovation in the health sector and recognize applications that are positioned as a support in the final decisions of many doctors. In the communication, they have with their patients, as well as in the final diagnosis.

About Legit.Health

Legit.Health is the revolutionary dermatological application based on artificial intelligence and Deep Learning technology, designed for Next-generation dermatologists. Health professionals who take advantage of the opportunities offered by new technologies to improve the state of the art in their field.

The algorithms were designed by Legit.Health is capable of, through simple photography, automatically fill in most of the medical grading systems, such as PASI, SCORAD, UAS, GAGS, and many more dermatology scoring systems. Becoming the tool that makes life easier for many doctors and patients. ​​In addition, the data is highly protected and stored in an encrypted system.

Legit.Health helps Next-generation dermatologists to offer a diagnosis much faster than the one achieved traditionally, reducing the workload of the doctor allowing them to estimate the severity of the pathology in a faster way and supporting their knowledge by offering an objective diagnosis.

In short, a tool that combines objectivity and precision in the report of a pathology and that allows doctors to maintain daily and effective communication with their patients. As well as being constantly informed of the changes in the pathology of the patient.

About the pharmaceutical company MSD

The pharmaceutical company MSD is one of the largest in the healthcare ecosystem and they have a clear objective: to save and improve lives.

They aim to make a difference in the lives of people around the world through innovative medicines, vaccines and animal health products. They are committed to being the first biopharmaceutical group dedicated to intensive research and to providing innovations and solutions for the present and the future.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Doctor-patient communication: 4 simple keys to understand it

· 7 min de lectura
Andy Anguilar
CEO at Legit.Health

Introduction

The communication between doctor and patient is one of the cornerstones of modern medicine, after all, the patient is the only one who really knows about the full extent of the nature of some of their symptoms.

Doctor-Patient communication

However, this seems to be something some doctors haven't yet mastered, and we think it is worthwhile to ask yourself...

Are you sure your patients understand you?

When we try to imagine things in the medical practice that might go wrong and worsen a health problem or cause a new one, the most common cases to think about are surgery related infections, malpractice cases or accidents.

Usually, we don't pay much attention to an endemic issue that can have mayor consequences for the health of the patient, such as ineffective communication.

Effective doctor-patient communication is a central clinical function in building a therapeutic doctor-patient relationship, which is the heart and art of medicine.

Jennifer Fong Ha, Doctor at the Perths childrens hospital.

Well-informed patients not only show better adherence to their treatment and a better understanding of their prognosis, but they also internalize better the purpose of care, making it easier to come to terms with the possible development of a chronic condition.

Do you want to see the clinical AI technology in action?

Miscommunication is never the patient's fault

In any other facet of life, misunderstandings or bad communication are a two-person affair. It is very rare that only one party involved in the issue has to take the brunt of the responsibility, and more often than not, solutions and compromises are reached when both parties acknowledge what they have done wrong and make efforts to fix it.

Doctor-Patient communication is not one of those cases

We have to keep in mind that the perspectives leading to that interaction couldn't be more different. While the doctors are on their workplace, fully immersed in the routine of their job and in a position of authority and knowledge; patients come to the visit filled with uncertainty, fear and more often than not, pain and discomfort.

Additionally, it is important to keep in mind the disparity in knowledge between the patient and the doctor. Where the former usually has no previous reliable information about their condition, the latter frequently has an almost excessive abundance of it.

It is important to keep in mind that one of the duties of doctors is to shoulder the majority of the communicative effort and that they need to do it in a way that won't hinder the treatment, the emotional wellbeing of the patient or their faith in the medical system.

How can we improve?

Patient-doctor communication is a complex interpersonal interaction that requires an understanding of each party's emotional state. Empathy, listening skills and a focus on human connection can go a long way when speaking to a patient.

Attitude change

As shown by a study published in 2018 by the Health Profession Education Journal, one of the main reasons of patient complaints regarding communication with doctors is a perceived poor altitude.

Doctors may be seen by their patients as "insensitive", "uncaring" or "lacking empathy" when they fail to understand the suffering and daily reality of those in their care.

Physicians often fail to recognise the occupational issues a condition might bring and do not take that into consideration when deciding on a treatment. A good example of this would be topical balms in dermatology, as some people can't afford to apply a cream frequently to the affected area while at work.

Disrespect is also highlighted in specific situations. For example, when doctors do not introduce themselves to their patients or do not seek their patients' permission for medical students to be involved in their care.

Lean to speak the same language

Another of the more common communicational problems that arise between doctors and patients is the language and terms used to explain the condition.

It is a well-known fact that a well-informed patient adheres better to the treatment, understands better the purpose of the care, and is less reticent to speak with their doctor. So achieving a quality communication can be pretty beneficial to the development of the condition and its treatment.

Sadly, that's easier said than done. Complex or less known conditions often come hand by hand with very specific medical terminology. The issue only exacerbates in the early diagnosis phases, when the doctor might not know the exact nature of the condition and the information they can give out to the patient is even less illuminating.

Experts recommend the use of natural language, avoiding medical terminology or concepts that could be commonly confused. It is also important to keep in mind common misconceptions, both to avoid feeding into them and to correct them when possible. Lastly, if possible, educational material specifically catered towards patients, such as pamphlets, magazines, or books should be made available to them.

Do you want to see the clinical AI technology in action?

Active listening and answering questions

In many occasions, patients and their relatives reported that their doctors failed to answer when asked about the condition at hand, or even worse, they didn't allow the patient to ask any question at all, interrupting or ignoring them.

This is an evidently bad practice, as not only prevents the patient to get informed about their condition and shuts down their interest for the topic, but the doctor is missing key information about the situation that might be hidden in the questions

Active listening is a way of listening and responding to another person that improves mutual understanding while seeking to extract all the possible information out of the conversation.

How can Legit.Health help?

Doctors Legit.Health

Patient focused medicine put in practice

At Legit.Health, we believe that these hard times in the patient's life shouldn't be made harder by the lack of support, the feeling of isolation or misunderstanding. That's why we strive to improve the communication between our users.

To achieve this purpose, we work closely with patients associations to better understand the user's needs. By doing so, we improve the usability and the usefulness of the app, and we also connect the patients with a community that shares this life-changing experience. This kind of contact has proven to improve the effectiveness of the treatments and makes the patient feel accompanied and understood.

Additionally, we understand that turning the patient into a more active participant in the treatment will empower them, increasing the feeling of control and self-management. The app also reduces the burden on the mental health of the user and helps them acquire better habits and improve treatment adherence, thanks to the frequent alerts it generates.

Besides, the patient can use the app remotely, whenever and wherever they want, which enables them to self-manage the process, empowers them and makes them feel more in control over their disease.

Do you want to see the clinical AI technology in action?

The best communication tool

One of the biggest obstacles for any successful treatment is the difficulty of communicating the necessary information to the patient in an efficient and accessible way.

It is no secret that many doctors have issues explaining the nuances of their situation or treatment to their patients, who often don't understand why some medical decisions are being taken. That sense of confusion and frustration can lead to a loss of confidence in the physician, or even the search for alternative, less effective, unproven therapies.

Legit.Health strives to improve the communication between patient and doctor, making the patient feel understood and in control. Better informed patients make better decisions, take their treatment more seriously, and trust their doctor more.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

How does Legit.Health positively impact the well-being of citizens?

· 7 min de lectura
Andy Anguilar
CEO at Legit.Health
Alfonso Medela
CAIO at Legit.Health

The Transformative Impact of Our AI-Driven Dermatological Technology on Society and Healthcare

Since she was little, Andy Aguilar knew that many things were wrong with her skin. And when she needed doctors, she was met with an ordeal.

She was held back by primary care, and then passed around from specialist to specialist, collecting incorrect diagnosis after incorrect diagnosis and taking the brunt of the consequences of the misguided treatments that came with them as her frustration with her healthcare providers grew. Each new appointment came with its ever-extending waiting period, as her symptoms worsened before her eyes.

That's why she founded Legit.Health, based on her experience as a patient, and with first-hand knowledge of how to fix the system and rescue patients.

Addressing Critical Issues in Access, Timeliness, and Comprehensive Care

By providing an efficient and highly accurate tool, our technology not only improves patient outcomes but significantly enhances the sustainability and equity of health systems globally. Indeed, our AI technology is not just about offering advanced diagnosis and monitoring capabilities. It's about transforming the patient experience by improving quality of life, enhancing health outcomes, empowering patients, and improving the overall efficiency of dermatological services. It's a comprehensive solution designed with a clear focus on patient-centric care.

Through the continuous tracking and analysis of these KPIs and metrics, we can assess the effectiveness of our AI technology in addressing critical healthcare issues and adjust our strategies as necessary for further improvements.

Reducing Waiting Time for Consultations

Traditionally, patients face considerable waiting times for dermatological consultations, with the timeframe often extending to several weeks or even months. Our AI technology is designed to mitigate this issue. The ability to accurately analyze skin images, it allows for prompt diagnosis and accelerates the medical decision-making process. As a result, patients can begin their treatment much earlier, dramatically reducing the waiting time and overall stress associated with these delays.

Metrics

  • Average wait time from appointment booking to consultation
  • Average wait time from consultation to diagnosis.

Traditional consultation
8 medical acts per hour

Doctor consultation

With Legit.Health
52 medical acts per hour

Doctor remote

Democratizing Care Access in Rural Areas and Among At-risk Collectives

Access to dermatological care is often a significant challenge for patients living in rural areas and for at-risk collectives. However, our AI technology bridges this divide by offering a platform for remote diagnosis and monitoring. Patients can capture and upload images of their skin conditions from their homes, enabling them to access dermatological care without the need to travel to healthcare facilities. This inclusivity extends the reach of health systems, ensuring that everyone, irrespective of their location or societal status, can receive the care they need.

Metrics

  • Number of rural and at-risk patients using the AI tool
  • Percentage increase in the utilization of dermatological services in rural areas/at-risk collectives.

Preventing Neglected Conditions from Triggering Other Diseases

Neglected skin conditions can often lead to other health issues, turning a seemingly simple dermatological problem into a complex medical challenge. Our AI technology encourages proactive healthcare by facilitating the early detection of skin conditions, reducing the chances of neglect. The tool provides an avenue for continuous monitoring of chronic skin diseases like psoriasis and dermatitis. This way, patients and doctors can monitor disease progression and adjust treatment strategies as needed, preventing any unnecessary complications.

Metrics

  • Reduction in the number of secondary complications arising from neglected skin conditions,
  • Reduction in the progression of chronic skin conditions.

Early Detection of Skin Cancer for Improved Survival Rates

Timely diagnosis of skin cancer significantly increases survival rates. Research shows that for each month of delay in diagnosis, there is a 15% decrease in survival rates. Our AI tool employs advanced image recognition capabilities to detect early signs of malignant skin diseases, drastically cutting down diagnosis time. This prompt action allows for earlier intervention and treatment, thereby increasing the chances of survival and reducing patient mortality rates.

Metrics

  • Increase in early-stage skin cancer detection rates
  • Increase in skin cancer survival rates.

Filling the Gap in Medical Care in Rural Areas

Rural areas often face a shortage of dermatological specialists, leading to reduced access to necessary care. Our AI technology effectively addresses this challenge by bringing expert dermatological diagnosis and monitoring to patients' homes, irrespective of location. With its intuitive interface and robust diagnostic capabilities, our tool empowers patients to play an active role in their healthcare journey, thus expanding the reach of quality medical care in rural areas.

Metrics

  • Number of rural users of the AI tool
  • Reduction in the number of untreated or late-treated skin cases in rural areas.

Improving Quality of Life

Skin conditions, particularly chronic ones, can profoundly impact an individual's quality of life. Our AI technology is built to alleviate this burden. With the ability to monitor conditions like psoriasis and dermatitis from home, patients can avoid the stress and discomfort associated with regular hospital visits. Moreover, rapid diagnosis enables quicker treatment, providing relief from symptoms and improving overall well-being. Our technology's remote access capability also saves patients' time and travel expenses, thereby improving their day-to-day living conditions.

Metrics

  • Patient-reported outcome measures (PROMs) for skin disease-related quality of life (like the Dermatology Life Quality Index, DLQI).

Achieving Better Health Outcomes

The primary goal of any healthcare technology is to improve health outcomes, and our AI tool excels in this regard. By offering an avenue for early detection of malignant skin diseases, it facilitates prompt intervention, increasing the chances of successful treatment. In chronic conditions, the AI aids in consistent monitoring and helps physicians make informed decisions on treatment adjustments, resulting in more effective disease management. This proactive and personalized approach leads to significantly better health outcomes and reduced complication rates.

Metrics

  • Reduction in complication rates
  • Improved disease management as measured by the reduction in symptom severity or disease progression
  • Patient recovery rates.

Increasing Autonomy and Control of Patients

Our AI technology empowers patients to play an active role in their healthcare journey. By providing them with the tools to capture and upload images of their skin conditions, patients become integral participants in their own diagnosis process. They can monitor their condition in real time, which gives them a sense of control and autonomy over their health. The tool's user-friendly interface and the ability to provide immediate feedback foster a sense of ownership and enhance patient engagement in their care.

Metrics

  • Patient engagement metrics such as the frequency of use of the AI tool
  • Patient satisfaction rates
  • Patient-reported measure of perceived control over their health

Results from the study at the Torrejon Hospital in Madrid (2021)

Reducing the Waiting Lists

Waiting lists for dermatological consultations can often be lengthy, posing significant delays to treatment. Our AI technology dramatically reduces these waiting times by providing immediate and accurate diagnoses based on image recognition. By bypassing the need for in-person consultation for diagnosis, it allows for a faster turnaround from symptom onset to treatment initiation. This efficiency not only reduces waiting lists but also frees up dermatologists to handle more complex cases, leading to an overall more efficient healthcare system.

Metrics

  • Reduction in the number of patients on waiting lists for dermatological consultations
  • Reduction in the average time patients spend on waiting lists.

Conclusion

Andy founded Legit.Health, based on her experience as a patient, with the idea that the use of her application would allow patients to have greater autonomy to report images with relevant clinical data for their doctors, as well as resources that will empower them by providing them with information and training on their pathology and its management, and the generation of a community in which they will feel accompanied and supported, impacting their quality of life.

Furthermore, the use of the Legit.Health application, an artificial intelligence tool with image recognition, will allow early diagnosis of malignant diseases and will facilitate the monitoring of the evolution of chronic skin diseases, speeding up clinical decision-making at every opportune moment. to offer the best assistance to their patients, improving the efficiency of the health system.

Aptar Digital Health and Legit.Health Partner to Improve Patient Experience in Immuno-Dermatology

· 4 min de lectura
Andy Anguilar
CEO at Legit.Health
Alfonso Medela
CAIO at Legit.Health

This collaboration will integrate Legit.Health's innovative technology into Aptar Digital Health's proprietary digital health platform to better manage and treat skin conditions

Aptar Digital Health, a global expert in Software as a Medical Device (SaMD), digital Patient Support Programs (PSPs) and disease management solutions, today announced a new partnership with Legit.Health, an innovative artificial intelligence (AI)-based medical device (CE-marked) software company, which aims to transform patient care and increase patient adherence to better manage skin conditions.

Legit.Health's state-of-the-art technology, which supports the diagnosis of approximately 300 conditions, including atopic dermatitis, psoriasis and skin cancer, will be integrated into Aptar's Digital Health proprietary platform. Focused on enhancing patient care and increasing patient autonomy, this advanced digital solution will support healthcare professionals (HCPs) to diagnose skin conditions earlier and will enable patients to start sooner on treatment plans to improve their overall quality of life. The solution may also be used to facilitate patient enrolment in clinical trials.

Legit.Health's use of AI for monitoring disease progression through automated, clinically validated scoring systems such as the Psoriasis Area Severity Index (PASI) and SCORing Atopic Dermatitis (SCORAD) will be leveraged within this partnership. This will help to ensure patients receive the most accurate and timely information to manage and treat their skin condition more effectively. The AI-powered technology also extends to the quantification of the intensity, count and extent of the visible clinical signs of skin conditions, offering HCPs a more precise measure of disease severity, an indicator considered critical in determining the most appropriate treatment.

This strategic partnership is set to drive digital transformation in the healthcare sector. The combined expertise of Aptar Digital Health and Legit.Health will pave the way towards harnessing the power of AI to improve patient experiences and outcomes in immuno-dermatology.

Aptar Digital Health and Legit.Health Partner to Improve Patient Experience in Immuno-Dermatology

Since 2021, Aptar Digital Health has been growing our portfolio of technology partners to provide improved solutions for patients in multiple therapeutic areas such as cardiology, neurology and visual acuity. With this new partnership, Aptar Digital Health is acquiring the ability to leverage AI technology to accelerate the diagnosis and monitoring of skin conditions.

Sai Shankar, President, Aptar Digital Health

One of our main aims within the medical assistance process in the field of dermatology is to be able to offer patients the opportunity of having the earliest and most accurate diagnosis, with the appropriate referral and treatment to reduce uncertainty and waiting times. Legit.Health's technology helps the medical practitioner to provide this kind of care to their patients and today, thanks to our partnership with Aptar Digital Health, we will be able to reach even more people who will benefit from our service.

Andy Aguilar, CEO and Co-Founder of Legit.Health

About Legit.Health

Legit.Health is the revolutionary dermatological application based on artificial intelligence and Deep Learning technology,designed for Next-generation dermatologists. Health professionals who take advantage of the opportunities offered by new technologies to improve the state of the art in their field.

The algorithms were designed by Legit.Health is capable of, through simple photography, automatically fill-in most of the medical grading systems, such asPASI,SCORAD,UAS,GAGS, and many more dermatology scoring systems. Becoming the tool that makes life easier for many doctors and patients. In addition, the data is highly protected and stored in an encrypted system.

Legit.Health helps Next-generation dermatologists to offer a diagnosis much faster than the one achieved traditionally, reducing the workload of the doctor allowing them to estimate the severity of the condition in a faster way and supporting their knowledge by offering an objective diagnosis.

In short, a tool that combines objectivity and precision in the report of a condition and that allows doctors to maintain daily and effective communication with their patients. As well as being constantly informed of the changes in the condition of the patient.

About Aptar Digital Health

Aptar Pharma's Digital Health division is part of AptarGroup, Inc., a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar Digital Health creates end-to-end solutions to enhance patient experiences every day, leveraging a holistic ecosystem of digital interventions. Amplified by an industry-leading portfolio of products and solutions, Aptar Digital Health's offering combines mobile and web apps, connected drug delivery systems, onboarding, training and advanced data analytics services to actively empower patients and create a positive treatment journey. Aptar is headquartered in Crystal Lake, Illinois and has 13,500 dedicated employees in 20 countries. For more information, please visit www.aptardigitalhealth.com and www.aptar.com.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

The Ship2B Foundation, which awards initiatives with social impact, gives Legit.Health its highest award

· 4 min de lectura
Andy Anguilar
CEO at Legit.Health

As every year the Ship2B Foundation has recognized, with the seal of social enterprise impact, different startups and companies that develop innovations in the area of health. Among them is Legit.Health, an application capable of detecting skin cancer through a simple photograph taken with a mobile phone. The aim is to create a space to promote technological innovations that help to improve the health and quality of life of people.

Ship2B Foundation

This pioneering technology, already in use in several hospitals such as the Torrejón University Hospital in Madrid, is presented as a tool that uses artificial intelligence to improve the lives of doctors and patients, thus creating a better healthcare community. As Andy Aguilar, CEO of Legit.Health, and patient with several skin diseases says: "We use artificial intelligence with the aim of helping the doctor to perform tasks that can be automated so that he can focus on what is more important: the patient".

Do you want to see the clinical AI technology in action?

The creators of this application are 4 young people with chronic dermatological pathologies. Therefore, they have created the first tool capable of providing doctors with the necessary tools to help them help their patients. The Ship2B Foundation states that this mark recognizes companies that, like Legit.Health, persistently pursues an improvement in health and social welfare. And they seek to respond to current health issues by providing doctors with the tools they need to diagnose diseases that affect millions of people.

An innovative technology in Spain that has a system capable of assisting doctors in the diagnosis and indicating the severity of the patient with respect to their pathology. Just by filling in, automatically, and with millimetric precision, the tedious measurement scales. Relieving health professionals by providing them with valuable information to make the right decision.

Telemedicine with Legit.Health

Legit.Health is a tool that allows both the doctor and the patient to get to the information in a very safe and quick way. It can be accessible at anytime from any device and there is no need to install anything. We made it incredibly easy-to-use.

Behind the team that runs Legit.Health, there is clear intentionality to respond to social challenges or problems. As Taig Mac Carthy, Co-founder of Legit.Health, says: "Our mission is to help doctors help their patients, the health system is oversaturated and doctors have more work than they can handle. What we're doing is using technology to make that workload more accessible and help them treat their patients better".

The objectives pursued by the entities recognized with the Ship2B seal are among the following: to solve a social problem with a focus on the patient, to be economically sustainable, and to make the proposed solution reach the greatest number of people and Hospitals.

Do you want to see the clinical AI technology in action?

About Ship2B Foundation

Its mission is to promote the impact economy, translated as an economic model where the main goal of this organization is not only to maximize their economic profitability but also their social and environmental impact.

Ship2B was founded in 2013 with the aim of creating an ecosystem of impact, formed by startups, companies, investors and organizations, that responds to the greatest social and environmental challenges of society. Its goal is to select the best technology startup that has a high social and environmental impact in order to accelerate its growth.

A pioneering technology

Legit.Health is a communication tool between doctors and patients that uses artificial intelligence and computer vision to help diagnose and monitor visible skin diseases. A platform, which is not only able to recognize what type of pathology appears in the photograph and help diagnose it, but also identify the degree of severity it has and track it.

The algorithms designed by Legit.Health are able to score automatically, and through a simple photograph, most medical grading systems such as PASI, SCORAD, UAS, GAGS and many more dermatological grading systems. This adds a layer of objectivity that was impossible until now.

This tool has managed to create a technology that adapts to the real-life situations of doctors and patients by helping healthcare professionals streamline their work, automating routine and administrative tasks to help them focus on what's most important: their patients.

In short, a platform capable of making a clinical diagnosis and an estimate of the severity of the pathologies with the same objective, to assist doctors in the diagnosis and indicate how serious the patient's pathology is.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Telemedicine: 5 great challenges of implementing it

· 7 min de lectura

Telemedicine

Introduction

In recent years, society as a whole has started to get used to the inevitability of a fully digital world embedding itself in all aspects of life, including healthcare.

And although there are many benefits the applied practice of telemedicine brings, there are also challenges to overcome before we can start to reap the benefits of this novel way of understanding healthcare.

Dermatologists highlight the usefulness of images in remote monitoring of chronic pathologies. That is why the tool is still in use today in our care activity, and we continue to explore new uses and improvements to it in the future.

Dr. Marta Andreu, Torrejón Hospital

Telemedicine is a reality, not a prediction

Digital disconnection is no longer a possibility for the average person. To this day and age, where every home has an internet connection and every pocket is laced with a smartphone, trying to deny the power the global net holds over our daily lives is as ridiculous as impractical.

Of course, the healthcare world is no different in that regard. Those who try to resist this wave of modernization are quickly being left behind or are being forced to adapt. It is common for concepts like telemedicine to be treated in future tense, but the COVID-19 pandemic has shown us that the time of predictions is over.

It is time to face the challenges that this new form of healthcare brings to us.

The past of remote care

One of the first practical usages of telemedicine happened in the late 1950s, in the state of Nebraska, where a state hospital and a psychiatric institution implemented a closed-circuit television link in order to help to monitor the conditions of patients remotely.

Although technology did rapidly advance in the following decades, its application to the remote care of patients never got through to be majorly used. Thus far, the most notorious advancement consists in a telephonic consultation, despite being widely considered an insufficient measure by both physicians and patients.

Today, the urge of using telemedicine is rather a reality than a remote possibility. The pandemic of 2020 rapidly changed the perception and necessities of many, forcing the healthcare community to prioritize efficiency and implement all the tools at their disposal.

What does the future look like?

Even though it is foolish to try to predict what future technologies will be developed in the next decade, we can learn from the most recent advancements to make an educated guess on the scientifical progress that will shape the future of healthcare.

An example can be the expansion of portable wirelessly accessible sensors, built into smartphones, smartwatches and other wearable devices, that allow doctors to collect data about their patients in real life and with minimal interference on their day-to-day life.

Another very promising prospect is Artificial Intelligence. Projects based on this technology have shown great results in the last couple of years in areas as diverse as oncology, radiotherapy, neurology, and dermatology.

One shining example of the use of Artificial Intelligence is Legit.Health, the revolutionary Clinical Data and Communication tool for Next-generation dermatologists that applies clinically validated algorithms and computer vision technology to enhance their medical practice.

The purpose of the deep learning algorithms is to relieve doctors from the tedious manual calculation of scoring systems and to allow the practice of a more objective evidence-based dermatology while speeding up the pathology reporting process and increasing patients' autonomy and control.

Do you want to see the clinical AI technology in action?

The 5 challenges of modern telemedicine

Financing

As commonly happens when suggesting to introduce a new technology or infrastructure, detractors rise money as an issue. However, considering only the potential costs of overhauling the medical system to make it more telematic is rather reductive unless the potential savings and profits are taken into account.

Balancing the economic costs and benefits of telemedicine will be without any doubt one of the biggest challenges to overcome, and the companies that offer services in this field need to keep that in mind. That's why Legit.Health keeps its pricing flexible and its technological requirements simple, so that any medical centre or institution can afford the small investment required.

Regulations

Another big challenge to overcome before adopting a fully telemetric system has to do with laws and regulations. It varies from country to country, but anywhere you go in the world, the implementation of medical devices is heavily regulated.

Additionally, if those devices manage patient information, laws like GDPR come into place to guarantee the security and integrity of the data. That's why any attempt of leaning into telemedicine requires addressing these issues.

Legit.Health not only has the European CE marking, but is a tool that is fully compliant with the GDPR as well as all other European standards, taking some of the burden and the hard work associated with keeping these matters in check. In other words, your work will be mostly done for you when the time for an audit comes.

Do you want to see the clinical AI technology in action?

Adoption

All the fancy technology in the world is equally useful or wasteful if those who are meant to use it do not know how to or do not want to adopt it. In this case, the challenge is twofold, as doctors and patients must come to terms with the idea of including these new technologies in the dynamics that have been ingrained in our collective mind for centuries.

Not only we need to convince patients that they can effectively communicate with their doctors via computers and smartphones, but we also need to help doctors adapt their usual routines to this novel systems.

This is why, Legit.Health has been developed with ease of use in mind. After being taken by the patient, the picture is analysed by the clinically validated algorithm and its results are sent to the doctor, who benefits from the consistency of the data generated by this process and greatly facilitates the work of monitoring rashes and disease development.

Telemedicine with Legit.Health

Technology

Technology has been the focus of telemedicine for a long time. However, telemedicine is really about the services and not about the uniqueness of the latest technology. An approach based on services and positive health outcomes means that no matter how much technology changes, the medical centre will have a system in place to implement it.

Legit.Health enables medical centres to merge technology and service into one easy-to-use package, offering both a plethora of tools for the medical practice and multiple options to provide their patients with the services they need to feel cared for.

Evidence

In the medical world, good ideas amount to nothing if they aren't backed by solid clinical evidence. This is true for procedures, drugs, medical devices and, of course, general concepts or services such as telemedicine.

Gathering scientific evidence might be the most difficult challenge telemedicine has to overcome before it can succeed. Every system, application, medical device or technology put in place to make this change possible must be thoroughly tested before it's implemented into a real-life setting.

Legit.Health participates in a myriad of clinical trials that pit algorithmic technology and application design against real medical scenarios in several European medical centres. As a company, we highly value our presence on medical journals, and helping to advance the field of dermatology is one of our main purposes.

Do you want to see the clinical AI technology in action?

In conclusion

Although the road ahead is long and tortuous, the healthcare community as a whole has already begun to take the first steps towards a future where telemedicine is a reality.

Thanks to technological advances by companies such as Legit.Health and initiatives by medical service providers such as DKV, to name a few, both patients and doctors are becoming more accustomed to the reality of remote medicine.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

2021, a great year for Legit.Health

· 4 min de lectura
Andy Anguilar
CEO at Legit.Health

Legit.Health and AEDV

2021 has been a pivotal year for Legit.Health. The company has grown tremendously out of its humble origins, adding to its roster talented and committed professionals that have put their all to make the next chapter of dermatology possible.

We have been rewarded and recognized for our work by several prestigious medical and business organizations, proving that the faith we put in a modern, value based, medicine is shared by many.

But most importantly, we have reached many more medical centres, and thus patients, all over Europe, allowing us to not only take part in numerous groundbreaking clinical trials, but to help doctors help their patients.

A year of recognition

One of the main highlights of this year would be the recognition given to us by several medical organizations.

The Spanish Dermatology and Venereology Academy (AEDV) awarded our work in the research of automatic scoring systems for Psoriasis, renewing our intent to keep adding to the scientific knowledge about skin diseases by putting our cutting-edge technology at the service of revolutionary clinical trials.

Alfonso Medela holding award

Alfonso Medela holding the AEDV award for the PASI

Other awards recognizing Legit.Health's drive towards growth and progress would be the CEBEK Emprende award and the Quality Innovation award, both highlighting our work in creating a more modern dermatology.

The foundation Ship2B also recognized our dedication to be a company with a social impact, focused on improving the life of our users. This drive has also granted us the European Patient Digital health award, a recognition that fills us with pride.

A year of growth

2021 has been an incredible year of growth for the company in all aspects.

We have incorporated into our team an array of hard-working professionals, coming from all sorts of backgrounds, from talented freelancers to people with experience in big multinational companies.

Legit.Health founding team

Legit.Health founding team

We have also joined forces with big partners such as DKV, Novartis or Rivera Salud to bring Legit.Health's technology directly to the hands of doctors and patients. As it can be seen with our campaign to raise awareness about skin cancer or our participation in the Barcelona Health Hub Summit, we have increased our scope tenfold from last year.

A year of innovation

One of our main focuses is, and always has been, to add to the scientific knowledge and push the state of the art of dermatology to a new level.

Our team of Artificial Intelligence experts has worked shoulder to shoulder with dermatologists and doctors in cutting edge clinical trials, not only to prove scientifically that our algorithmic technology works, but to show the scientific community that the future of medicine is irrevocably linked to AI.

Legit.Health research team presenting the AIHS4 poster

As an example, this year we have made public two in-depth studies about the AI assisted diagnosis of Psoriasis and Hidradenitis Supurativa respectively, both of them will be published in scientific papers during 2022.

Lastly, we continue to closely work with patients and patient associations to better understand the reality they face when diagnosed with a cutaneous disease. We take a patient centric approach to the development of our app, and we are taking further steps every day to help doctors help their patients in a more efficient and humane way.

What does the future hold for Legit.Health?

As we enter into 2022, our teams are already working in the next new and exciting updates to both our product and the field of dermatology.

We want next year to be focused around patients, doctors, and their relationship; and we plan on releasing several real success stories of patients and doctors whose lives have been improved by Legit.Health.

Of course, we have a renewed commitment to add to the state of the art of medicine, developing the newest computer vision algorithms. We are proud to say that we are working on expanding our expertise into issues like facial paralysis or disciplines like trichology, as well as continue expanding our knowledge of dermatology.

We are excited about the new year, and we couldn't be happier about sharing it with all the doctors, patients, medical centres and companies that put their trust in us. Without you, Legit.Health wouldn't be possible.

That's why the Legit.Health team wants to wish you a Happy New Year.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Novartis Biome and Legit.Health team up for digital health innovation

· 4 min de lectura
Andy Anguilar
CEO at Legit.Health

The pharmaceutical company and startup catalyst has been part of BHH 2021, a project that brings together innovations for the patients of the future.

Novartis

The startup Legit.Health, in partnership with Novartis Biome, has demonstrated the importance of innovation and technology in the field of healthcare when it comes to saving lives, by participating in the Barcelona Health Hub Summit (BHH). An event that brings together innovative companies and products from all over the world, this year 2021 is the turn of technological innovations designed for the patients of the future.

Legit.Health application is capable of detecting the presence of 232 skin diseases through a simple image taken with a mobile phone, including skin cancer

One of the main objectives of Novartis Biome is to connect Novartis and the digital health ecosystem to bring innovative high-impact solutions to patients and healthcare professionals, acting as a catalyst for impactful digital collaborations, creating value that extends beyond medicines.

During the ceremony, Clara Cuervo, leader of Novartis Biome Spain, a catalyst for startups in the healthcare technology field, spoke about "the importance for the evolution of medicine of bringing together companies capable of providing digital solutions that improve and prolong the lives of patients". Novartis believes that the union of science and technology is necessary to create healthcare solutions and seamless experiences for doctors and patients.

This has been fundamental in driving the brilliant technology that Legit.Health has developed. The founders, patients with chronic diseases, know how difficult it is to maintain fluid communication with the doctor. For this reason, they have developed an application that improves effective doctor-patient communication by translating the doctor's clinical language that the patient doesn't always understand.

Do you want to see the clinical AI technology in action?

Also, estimating the severity of pathologies is a daily challenge that many doctors have to deal with, a tedious and routine job that takes time away from treating the patient. Taig Mac Carthy, co-founder of Legit.Health and patient with skin diseases explain that "the app is not only able to identify the pathology seen in the photo, but it also estimates the severity of that pathology, in only 23 seconds."

In short, the app is presented as a support in the diagnosis and monitoring of diseases the solution to the problem that today's doctors are shouting out for. Legit.Health is able to collect the automatic results provided by the algorithms, as well as the results reported by the patient about their quality of life and the situation with their disease.

About Legit.Health Technology

Legit.Health is the clinical data and communication tool developed to help doctors help their patients. Its algorithms are developed to automatically fill in medical scoring systems such as PASI, SCORAD, UAS or GAGS, and many more dermatological scoring systems.

The automatization of these scoring systems not only helps doctors and empowers the patient, but adds a layer of objectivity that was impossible until now. This technology helps dermatologists provide quicker diagnoses than the traditional way. It reduces the doctor's workload by allowing them to estimate the severity of the pathology quickly and objectively.

A tool that is already being implemented at Viewtech Mexico, and that merges objectivity and accuracy in pathology reporting, allowing doctors to maintain effective communication with their patients.

About Novartis Biome

The Novartis Biome unites the best of science and technology to create better healthcare solutions and patient experiences. It was created as a bridge to help partners become an extension of our own teams, working with us as easily and productively as possible to jointly innovate and co-develop digital solutions at scale.

We're taking on some of the biggest healthcare challenges, something we can't and don't want to do on our own. We're committed to partnering with the best in the ecosystem to combine our deep scientific experience with the expertise of the tech world to develop scale digital solutions that improve and extend patients' lives.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Pre-malignancy: detect skin cancer before it becomes a problem.

· 8 min de lectura
Alfonso Medela
CAIO at Legit.Health
Taig Mac Carthy
Co-founder at Legit.Health

Introduction

The future of skin cancer prevention has arrived thanks to Legit.Health's revolutionary pre-malignancy estimation tool.

Legit.Health has developed a clinically validated tool that processes smartphone images and automatically analyses them, utilizing the criteria of the top doctors in this field and calculating the pre-malignancy suspicion of any lesion.

All the advantages of cutting-edge technology and the processing power of deep learning algorithms are put in the hands of Next-Generation Doctors who want to prevent skin cancer.

Prevention should not consist on catching skin cancer before it kills you. Prevention should also catch a skin cancer before it's even skin cancer.

Skin cancer: common, lethal, ignored

In a world where sunbathing and the use of tanning products and treatments have become widespread, the risk of skin-related diseases such as Keratinocyte cancer (which represents 95% of malignant skin tumours) is higher than ever.

Cutaneous malignancies are the most frequent type of cancer in the world, with over 2 million people affected yearly.

Iorio, M. L., Ter Louw, R. P., Kauffman, C. L., & Davison, S. P. (2013). Evidence-Based Medicine. Plastic and Reconstructive Surgery, 132(6), 1631--1643. doi:10.1097/prs.0b013e3182a8085f

Additionally, the excessive workload that doctors face in healthcare systems across the world and the lack of awareness from patients only exacerbate the problem, as many doctors manually analyse harmless moles and many patients fail to identify harmful lesions and let them develop for much longer before seeking medical help.

Preventive medicine saves lives

The power behind early detection and preventive medicine is well known within the field of oncology and is a reality of the day-to-day practice of any Next-Generation Doctor.

Prevention has become an important way to manage keratinocyte cancer, so it is important to assess the effectiveness of methods used to prevent keratinocyte cancer in the general population.

Sánchez, G., Nova, J., Rodriguez-Hernandez, A. E., Medina, R. D., Solorzano-Restrepo, C., Gonzalez, J., ... Arevalo-Rodriguez, I. (2016). Sun protection for preventing basal cell and squamous cell skin cancers. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.cd011161.pub*

Preventive action can only happen if the doctor has access to two key things: 1) adequate resources and 2) a good screening process. This is especially true in situations where a lesion that is not malignant in the present moment could become malignant in the near future, a situation known as pre-malignancy.

Biopsies should not be prescribed lightly, so most cutting-edge doctors have come to rely on specialized tools to assist their diagnosis. Thus, having access to the adequate tools to help doctors make the diagnosis and take the appropriate steps to determine the nature of the disease is key.

Among these tools, artificial intelligence is the most used and most rapidly evolving. Many companies focus on diagnosis, but Legit.Health is leading preventive action with the pre-malignancy suspicion artificial intelligence. In other words, Legit.Health's algorithms not only tell you if the lesion is currently malignant but also give you the value that reflects the algorithm's suspicion of the lesion becoming malignant at some stage.

Case study: DKV health insurance

Since 2021, doctors that care for patients in partnership with the Spanish insurance company DKV, are benefiting from Legit.Health's pre-malignancy suspicion technology. This grants doctors a high-quality triage of patients that allows them to care for patients better, and it also helps doctors in the process of helping patients understand what are the risks.

Image of pre-malignacy suspicious technology

Legit.Health joins DKV to prevent the rise of skin cancer on Spanish beaches with Artificial Intelligence

With an accuracy of 93,23%, the skin-diagnosis technology developed by Legit.Health detects melanoma just by looking at smartphone images.

Using what is already known as "virtual dermatology", DKV offers, through the app Quiero cuidarme Más, all health services digitally on the phone. In short: it's an app that allows you to upload photos and virtually visit a dermatologist.

The future of AI-asisted prevention is Legit.Health

Legit.Health is the revolutionary Clinical Data and Communication tool for Next-generation dermatologists that triples the empowerment of patients.

The purpose of deep learning algorithms used in Legit.Health is to help doctors make an informed decision, putting all the processing power and stored data of a cutting-edge computation at the service of the physician's performance.

Legit.Health's algorithms automatically grade lesions just by looking at smartphone images and small patient-reported outcome measures (PROMs). In other words: the tool will automatically fill in most of the dermatology scoring systems, such as PASI, SCORAD, UAS, as well as estimate the pre-malignancy of any lession.

How does this revolutionary tool for next-generation doctors work?

Enables early detecion

As hard as it might be, early detection is in the hands of the patients. They are the ones who know their body better and the ones who have access to it on a day-to-day basis. Sadly, they usually lack the knowledge and expertise to identify what's truly worrisome, so communication between doctor and patient is one of the most important parts of the diagnosis process.

Legit.Health empowers the patient to become an active participant in their treatment starting on the early detection phase, enabling them to take a simple smartphone picture and automatically send them through the app to their doctors in mere seconds.

Regardless of the disease presenting malignancy, pre-malignancy or falling within another category, the deep learning algorithms are able to discern between 232 different skin pathologies, so whatever is happening to them, the users can be sure that the app will be able to help their doctor identify the problem.

A precise pre-malignancy estimation

Using deep learning computer vision algorithms trained with thousands of images and the input of top doctors in their field, this tool is capable to give the doctor the five most probable diseases with a margin of error of only 12%.

Legit.Health's revolutionary solution not only is able to detect and identify the most common malignant lesions such as malignant melanoma, basal cell carcinoma, squamous cell carcinoma, intraepidermal carcinoma and more but can detect and categorize most diseases with a pre-malignancy diagnosis like Keratoacanthoma, Actinic keratosis or been Atypical Nevis.

This means that both primary attention doctors and specialists will have, at hand reach, the curated second opinion of dozens of specialists on the field.

Easy to use

Any tool that relies on the doctors and the patients gave it a propper use needs to be easy to use and understand.

Thanks to the revolutionary deep learning algorithm developed by Legit.Health and the design of its interface the patient only needs to take a picture of the affected area with their smartphone and its automatically sent to the doctor for further analysis.

This picture is analyzed by the clinically validated algorithm and its results are sent to the doctor, which benefits not only from the consistency of the data generated by this process but makes much easier the job of monitoring the development of a lesion showing pre-malignancy.

After all, communication between the doctor and the patient is one of the cornerstones of medicine, and it should be easy.

Image of pre malignancy prediction with artificial
intelligence

Image of pre malignancy prediction with artificial intelligence

A precise and reliable tool

Legit.Health's tool analyzes the pathologies using a validated scoring system that has both the lowest MID (Minimal important Difference) and is sensible to the lowest LDC (Lowest Detectable Change), which means the algorithm analyzes every image with more precision and attention to detail than any human observer would.

Furthermore, it has a higher validity and reliability while maintaining comparable clinimetric properties, thanks to the intrinsic functioning of computer vision algorithms.

In conclusion

The revolutionary tool developed by Legit.Health will change how we approach the early diagnosis of skin cancer, empowering the patient to report their symptoms earlier than ever, allowing doctors an easy method of screening and triage, and enabling smooth communication between both of them.

Thanks to Legit.Health, doctors across the globe can improve their correct diagnosis rate by 23% and make treatment easier to follow for the patient by making them active participants in their own recovery.

There is no denying that the use of algorithms that estimate the severity of the disease represents a bright future for the practice of dermatology and that will, without doubt, help advance the field.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Value-based healthcare, the 5 basic principles that will change the world of medicine

· 7 min de lectura
Andy Anguilar
CEO at Legit.Health

Value-Based care

Introduction

The world is in a dire need of creating a more sustainable and efficient healthcare system that delivers value to its patients and improves the overall wellbeing of the entire community it serves.

Value-based healthcare may seem like a novel idea, but it has been around for more than twenty years, helping medical centres, pharmaceutical companies and insurance companies to have the greatest impact on patients while improving cost-efficiency in health care services.

What's Value-Based Healthcare?

Value-Based Healthcare is a transformational concept whereby health care providers are compensated for the health and well-being of their patient population rather than for services rendered.

This paradigm shift began in the heavily privatized healthcare landscape of the United States of America, but has spread around the world over the past couple of decades, adapting to different systems and philosophies.

To put it shortly, value-based healthcare puts the positive health outcomes of the patients at the top of the pyramid of priorities.

What's a Health Outcome?

Health outcomes are an interrelated set of attributes that describe the consequences of disease for an individual. These include impairments, symptoms, functioning, participation in activities and social roles, and health-related quality of life.

Positive health outcomes include being alive; functioning well mentally, physically, and socially; and having a sense of well-being. Negative outcomes include death, loss of function, and lack of well-being.

Do you want to see the clinical AI technology in action?

The paradigm shift made real

Although this may seem counterintuitive to many, traditional approaches to healthcare assume the task of improving patient wellbeing as a given and let it rest on the shoulders of doctors and other professionals.

By putting all the focus of the system on curing the disease and forgetting about any other part of the healing journey, traditional healthcare systems often ignore the importance of rehabilitation or prevention in an effort to maximize profit or reduction of costs.

Ironically, this approach often forgets about the added cumulative cost of a bad rehabilitation program or the lack of prevention campaigns in the population.

However, the paradigm shift that comes with value-based healthcare is not a mere theoretical concept still far away from our reach, but a reality in many medical centres and systems that are putting into practice some of the following principles:

1. Speed up the connection between scientific progress and patient care

The main goal of value-based healthcare is to improve the community's overall health. To achieve this, it is of vital importance that, while keeping the necessary safety procedures in place, we speed up the application of cutting edge scientifical advances to the medical field.

There is a plethora of knowledge being generated by our best researchers that is either being under-utilised or totally unknown, as most medical professionals don't have the time to keep up to date with the progress made in their field.

A good example of this phenomenon is artificial intelligence, a field that has been experiencing exponential growth over the last couple of years and which is finding incredible applications for these developments in many areas of medicine.

Yet despite this, many doctors, driven by fear, complacency, or lack of knowledge, refuse to add this new tools to their toolkit.

Legit.Health Psoriasis

Artificial intelligence helps value based healthcare

2. Re-think the traditional profit-focused model of the pharmaceutical industry

The pharmaceutical industry is one of the main pillars of our modern healthcare system, and plays an essential role in ensuring the safety and health of the population. Trying to build a value-based healthcare without the cooperation of these companies is a futile endeavour.

This is why, the current profit focused business model of many pharmaceutical companies must change in order to achieve a fully sustainable yet competitive value-based healthcare.

While this is particularly evident in the US market, where drugs such as insulin have become prohibitively expensive for patients, insurance companies and health centres alike, it is a reality that extends to all the corners of our globalized world.

Focusing on positive health outcomes will allow pharmaceutical companies to maintain their profit margins while helping to build a more healthy future for all of us.

Do you want to see the clinical AI technology in action?

3. Align the interests of patients and health care providers

One unsustainable reality of our current healthcare system is that having a patient is more profitable for the medical centre than not having one, while obviously the patient is better off not being sick at all.

This ambivalence needs to end in order to achieve a value-based healthcare. And until we can make all diseases and health problems magically disappear, we must make sure the interests of the health care providers are properly aligned with the patients' needs.

The principles of a patient-centred medical care are closely related to those of a value-based healthcare, and combining both into the same actions is undoubtedly the way of the future..

4. Reduce the cost, improve the quality of care

One of the big paradigm shifts for most medical centres is transitioning away from filling hospital beds to creating a healthier community.

With this cost reduction, it must be borne in mind that medical centres should focus on providing better care, not more care. Getting rid of redundancies, streamlining the derivation process, speeding up the diagnosis and reducing the rate of misdiagnosis are key goals of the value-based healthcare roadmap.

Additionally, the pandemic has shed a light on the idea of telemedicine and its potential benefits to both the public and the healthcare community. Those who take advantage of these emerging technologies will be at the forefront of developing sustainable and profitable value-based healthcare.

5. Focus on the social determinants of health

Lastly, it is important to keep in mind the social determinants of health. Problems such as obesity, tobacco addiction, alcoholism, or opioid abuse cause most health issues, especially in the long term. Preventing and controlling this kind of factors, not only through conscientization campaigns but also through the day-to-day fieldwork of the doctors, is a key step towards ensuring a healthier population.

We cannot forget about other social issues that plague our modern society and might impact the health outcomes of the patients, such as unemployment, poor housing conditions, lack of nutritional and health education or difficulties in accessing certain technologies.

While our healthcare system cannot solve all these kinds of issues, it is important that doctors, insurance companies and medical centres are mindful of them in order to provide value-based healthcare that benefits us all.

Do you want to see the clinical AI technology in action?

Evidence-based medicine: how Legit.Health is leading the way

Evidence-based medicine is fundamental to the delivery of high quality and effective medical care. However, it is a process that requires time, resources and expertise. That's why Legit.Health is leading the way in implementing artificial intelligence (AI) solutions in healthcare, specifically in dermatology.

This tool can prioritise the most urgent cases, allowing patients to receive the necessary care at the right time and reducing waiting time. In addition, the tool helps to remotely track pathologies and improve education and training for primary care. It also personalises treatment for each patient according to the severity of their skin pathology. All this contributes to improving the quality of medical care and optimising available resources.

In conclusion

The paradigm shift of value-based healthcare is already happening on multiple fronts across the world, and the current debate is not so much about whether its principles should be applied, but how to apply them.

The healthcare community continues to work towards a brighter future where the well-being of the patient is the top priority of all parts involved in the care cycle. And it is our duty as professionals in this sector to continue working to improve the systems that take care of our health.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Quality Innovation Award gives the prestigious national innovation award 2021 to the startup Legit.Health

· 4 min de lectura
Andy Anguilar
CEO at Legit.Health

This renowned competition helps encourage projects in the healthcare sector and reminds us of the need to support innovation, very important in times of crisis and pandemia

Quality Innovation Award

The prestigious competition created in 2007 by Excellence Finland to promote innovative projects in companies and organizations, has awarded the startup Legit.Health with the Quality Innovation Award 2021 at the national level. A competition coordinated by the National Association of Excellence promotion Centers -CEX to give local and international recognition to the most innovative projects. Euskalit is one of the members of the Quality Innovation Award Committee, and in the local phase, it has the collaboration of Innobasque and Unibasq for the dissemination and evaluation of the candidatures.

Is the first time that a basque startup has been chosen in the health category, where all innovations aimed at the health sector are awarded. Legit.Health has been recognized for being a software for prevention, diagnosis, severity measurement and automatic monitoring of chronic and malignant skin diseases with artificial intelligence and computer vision algorithms.

Do you want to see the clinical AI technology in action?

The innovative technology developed by Legit.Health is able to facilitate the work of doctors, helping them to provide better treatment to their patients. As Taig Mac Carthy, Co-founder of Legit.Health and regular patient of skin diseases, says: "We believe that technology should always be at the service of humans. That's why we use AI and computer vision algorithms to help doctors reach where they can't "

Winners from previous years include organisations such as Osakidetza, the Basque health service, for its work in health innovation. In addition to this, there are other categories in the competition: innovations in the public sector, innovations in the education sector, innovations approaches, innovation in micro-enterprises or startups and innovations in large companies.

We believe that the best algorithm is the doctor, that's why Legit.Health is a clinical decision support tool. Our diagnostic algorithm never replace the doctor, but rather provide them with valuable information to make a decision.

Legit.Health was born with the aim of improving the lives of patients and doctors. Its founders, 4 young people with chronic skin diseases, have created an application capable of detecting skin cancer through a simple photograph taken with a mobile phone. This technology increases doctors' correct diagnoses and provides them with the necessary tools they need to help their patients. A pioneering technology that is already being used in several hospitals such as Cruces and Basurto Hospitals in Bizkaia.

A system capable of assisting doctors in the diagnosis and indicating how serious the pathology is. Filling in automatically, and with a millimetric precision, the tedious measurement scales. However, as Andy Aguilar, CEO of Legit.Health and patient of several skin diseases, comment: "This technology never replaces the doctor but provides valuable information to make a decision"

Do you want to see the clinical AI technology in action?

About Legit.Health

Legit.Health is a communication tool between doctors and patients that uses artificial intelligence and computer vision algorithms to help diagnose and monitor visible skin diseases. Its technology automates routine and administrative tasks to help doctors focus on what's most important:the patient.

The algorithms designed by Legit.Health are able to score automatically, and through a simple photograph, most medical grading systems such as PASI, SCORAD, UAS, GAGS and many more dermatological grading systems.

The automatization of these scoring systems not only helps doctors and empowers the patient, but adds alayer of objectivity that was impossible until now. This technology helps dermatologists provide quicker diagnoses than the traditional way, reducing doctors' workloadby allowing them to estimate the severity of the pathology quickly and objectively.

A platform capable of making a clinical diagnosis and an estimation of the severity of the pathologies. In short, an application designed to help doctors reach where they can't reach. And give them all the keys they need to help them help their patients.

About Quality Innovation Award

The Quality Innovation Award (QIA) it's a competition created in 2007 to stimulate the emergence development of product innovations and processes innovations. The common goal of all members is to help increase the competitiveness of participating organizations and countries.

In 2017, CEX (National Association of Excellence promotion Centers) was approved to join the group of entities that manage the Quality Innovation Award (QIA). Of which organizations promoting quality, excellence and innovation from numerous countries including Finland, Spain, Estonia, Hungary, Israel, and others.

This Quality Innovation Award (QIA) is annual and enables innovators to get a professional assessment for their innovation, benchmark their innovation against others and increase the visibility of their innovation.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

Legit.Health joins DKV to prevent the rise of skin cancer on Spanish beaches with Artificial Intelligence

· 4 min de lectura
Andy Anguilar
CEO at Legit.Health

The Spanish Artificial Intelligence startup Legit.Health and the health insurance company DKV join forces this summer to raise awareness around the dangers of skin cancer.

Every year almost 23 thousands skin cancers are diagnosed in Spain.

Summer is approaching and the cases of skin cancer are increasing. The good weather and high temperatures of the peninsula make many Spaniards go to the beach looking to show off their tanned skin. Forgetting, in many cases, the danger of prolonged exposure to solar radiation.

The revolutionary dermatology tool with Artificial Intelligence, Legit.Health, and the health insurance company DKV, know this very well. That's why they have decided to join forces to raise, among Spanish citizens and tourists, the importance of anticipating possible skin diseases and using teledermatology services.

Using what is already known as virtual dermatology, DKV offers, through the app Quiero cuidarme Más, all health services digitally on the phone. In short: it's an app that allows you to upload photos and virtually visit a dermatologist.

Furthermore, Legit.Health's algorithms are capable of identifying, in just 2 or 3 seconds, a skin lesion, just by looking at a photo taken with a mobile phone. The technology allows to identify diseases automatically, and thanks to the automatic scoring systems, it offers patients the power to monitor their skin pathology.

Do you want to see the clinical AI technology in action?

Skin cancer is one of the most common cancers in the world. It is produced by the unusual and uncontrolled growth of skin cells, altered due to the action of ultraviolet radiation (UV). The most common form of skin cancer is basal cell carcinoma, which constitutes between 80 and 90% of the cases detected. Although the best known and more invasive cancer is melanoma.

According to the Asociación Española Contra el Cáncer (AECC), in 2020 almost 23 thousand cases of skin cancer were detected in Spain. This number is really worrying dermatologists, and many estimate that patients delay going to consultation when they first identify suspicious signs of skin cancer.

With an accuracy of 93,23%, the skin-diagnosis technology developed by Legit.Health detects melanoma just by looking at smartphone images. The technology provides follow-up capabilities and allows a previse of the evolution of the pathology, which is very important on this type of cancer. Indeed, a delay of one month in the diagnosis means reducing the patient's life expectancy by 15%.

This application detects skin cancer just by looking at any photo taken with a mobile phone. Despite this, Andy Aguilar, the entrepreneur who runs Legit.Health, points out "this device never replaces the doctor" but instead constitutes a support tool in "the detection and monitoring of skin diseases".

In conclusion, two tools are designed to offer the best dermatological services thanks to technology and Artificial Intelligence. Created for a common goal: fight against skin diseases.

Do you want to see the clinical AI technology in action?

About Legit.Health

Legit.Health is the next-generation clinical artificial intelligence, designed for dermatologists who are looking for new ways to help their patients, thanks to the development of new technologies.

Using algorithms designed through artificial intelligence, this application is capable of detecting the presence of 232 skin diseases through a simple image taken with a mobile phone. Within these, Legit.Health has focused on improving the algorithms of 9 pathologies: Psoriasis, Dermatitis, Acne, Hidradenitis, Rosacea, Urticaria, Keratosis, Basal cell carcinoma, and Melanoma.

Helping in the follow-up of the disease and freeing the doctor from calculating the scoring system manually. Legit.Health's algorithms are developed to automatically fill in medical scoring systems such as PASI, SCORAD, GAGS or DLQI, among others.

In addition, the software is capable of analyzing the images that patients send to the doctor. By doing so, it ensures that the image has enough quality for a clinical evaluation. Thanks to this, the dermatologist can consult the tool and make a diagnosis as effective as possible, as well as sending useful information to the patient. In turn, patients obtain a detailed follow-up of their pathology. It also allows patients to keep uploading photos and see the evolution, encouraging them to become more active participants in their care.

About DKV

In Spain, DKV is established throughout all the national territory with a wide network of health insurance offices and clinics, with 2.000 employees almost that serve nearly 2 million clients.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

The AEDV celebrates in Bilbao the first major scientific event in dermatology after the pandemic

· 3 min de lectura
Andy Anguilar
CEO at Legit.Health
Alfonso Medela
CAIO at Legit.Health

In an event that will be remembered as a turning point for dermatological science, the 48th congress of the Spanish Academy of Dermatology and Venereology (AEDV) in Bilbao was not only a gathering of minds but also a showcase of cutting-edge advancements in the field. A beacon of progress and resilience, this congress was the first major dermatology event in the post-pandemic era, illustrating the relentless pursuit of medical innovation.

AEDV

Hosting over 300 global experts, this congress became a melting pot of ideas, fostering discussions on pivotal topics like psoriasis and teledermatology. Yolanda Gilaberte, vice president of the AEDV, highlighted the enhanced role of teledermatology accelerated by the pandemic, alongside the prospective transformations brought by artificial intelligence in skin disease identification.

Spotlight on Legit.Health: Advancing Dermatological Care

Among the esteemed participants, Legit.Health emerged as a frontrunner in medical imaging, receiving accolades for its innovative use of deep learning algorithms in the "Automatic calculation of the Psoriasis Area and Severity Index (PASI)." This breakthrough underlines Legit.Health's dedication to enhancing patient care and revolutionizing the diagnosis and management of chronic skin diseases.

In a significant advancement for Hidradenitis Suppurativa management, Legit.Health also presented the AIHS4: "Automation of the International Scoring System of the Gravity of Hidradenitis Suppurativa."

Empowering doctors and patients through technology

The congress highlighted the pivotal role of technology in modern medicine, especially in dermatology. Legit.Health, a startup born with the mission to improve the lives of doctors and patients, showcased its innovative platform — the first to support clinical diagnosis with AI algorithms capable of assisting in diagnosis and severity assessment.

Andy Aguilar, general director of Legit.Health and a patient with chronic skin diseases, emphasized that technology should always serve humanity, aiding doctors to reach new heights in patient care.

A pioneering technology in dermatology that is already used in several hospitals, including Cruces and Basurto Hospitals, among others. In addition to its work on the automatic estimation of the severity of psoriasis, Legit.Health, has presented another publication about the state of the art of the automation of the scoring system for hidradenitis suppurativa, the AIHS4: "Automation of the International Scoring System of the Gravity of Hidradenitis Suppurativa "

Do you want to see the clinical AI technology in action?

Skin diseases change the lives of those who suffer from them. For this reason, this pioneering algorithmic technology has begun what is already an extensive collaboration with doctors, researchers and hospitals to create this artificial intelligence tool; although as its founders point out: "Our diagnostic algorithms never replace the doctor, but rather provide valuable information to make a clinical decision".

About the AEDV

The Spanish Association of Dermatology and Venereology (AEDV) has a rich history spanning over a century, dedicated to advancing dermatology in Spain.

The AEDV is a significant and apolitical medical-scientific association, primarily focused on the study and promotion of both healthy and diseased skin care for the benefit of patients, society, and the medical field as a whole. The AEDV is involved in addressing issues related to medical and surgical dermatology and venereology, including challenges faced by specialists in these fields. This organization has been instrumental in shaping the landscape of dermatological care and research in Spain, with a substantial majority of Spanish dermatologists being members of the AEDV.

Get access now

This free 23-day trial of Legit.Health gives clinics and hospitals a hands-on look at how to drive increased adherence and improve patient outcomes, as well as improving efficiency and overall quality of life.

The legal challenges of telemedicine

· 6 min de lectura
Taig Mac Carthy
Co-founder at Legit.Health
Disclaimer

This post is a summary of the event held at Comillas ICADE Law School, focused on the legal aspects of remote medicine.

telemedicine with Movistar, enrique ruiz and taig mac carthy

The Comillas ICADE Law School held the 1st Telemedicine Conference within the Uría Menéndez-ICADE Chair on Market Regulation. The Conference had the participation of representatives of the public and private sectors who have had the opportunity to review the situation of telemedicine in our country.

Relevant issues such as ethical, data protection and regulatory or responsibility aspects of telemedicine have been reviewed, concluding on the feasibility and necessity of the practice. Likewise, the essential public-private collaboration to promote the digitization of health has been highlighted as one more lever than those envisaged in the Recovery, Transformation and Resilience Plan financed with NextGenUE funds.

In the different round tables, an interesting tour has been made on the state of the practice of telemedicine both in the private sector, as well as in the public health and social health sector.

Speakers

The speakers highlight the contribution of telemedicine in the crisis derived from the COVID-19 pandemic, and agree on the potential that the digitization of healthcare services offers. Telemedicine must be consolidated as the definitive impulse for the digitalization of the health system.

Dr Ricardo Ruiz (ICD)

Dr. Ricardo Ruiz, medical director of the International Dermatology Clinic (CDI), first Spanish center where clinical, surgical, oncological, paediatric and restorative dermatology is carried out jointly. He aims to offer the highest scientific rigour and provide his patients with a unique quality of care.

Taig Mac Carthy (Legit.Health)

As Co-founder and COO of Legit.Health, Taig Mac Carthy seeks to offer dermatologists the keys to enhancing their professional experience. Developing, always with a focus on data protection and privacy, the perfect tool for a user experience and usability.

Andres Padilla (Movistar Salud)

With solid experience in the world of technology and telecommunications, Andrés Padilla, is an expert on understanding customer needs, market trends and emerging technologies. He seeks to offer medical solutions thanks to the facilities and modernity offered by Movistar telemedicine service, which allows patients to be connected to a doctor wherever they are.

Next Generation Dermatology

We are in the middle of the artificial intelligence revolution. Created to facilitate and modernize dermatologist's work, Legit.Health algorithms ensure quality medical care. The speed of the automatic results brings easier disease monitorization, with complete security and data protection, making this software one of the best tools available nowadays.

Legit.Health gives doctors the ability to telematically and rapidly track skin lesions, providing automated monitoring of changes during the course of the disease, which are often invisible to the human eye. Offering dermatologists all the tools that they need to empower their patients to take control of their disease and not the other way around.

Telemedicine was born to stay and bring with it the opportunity to generate new platforms that can help save lives. This is why Legit.Health is so advantageous and necessary for dermatologists, because it provides them a new way for interacting with patients, ensuring them a good monitoring of their pathology, inside and outside the clinic.

Legit.Health technology is at the service of doctors who only have to worry about making the diagnosis of the patient. Helping them to make a better use of their time, removing the unnecessary follow-up visits on their consults, and providing an error-free evaluation, speeding up the cure of their patients' disease.

From home, patients only need to take their smartphones and take a photo of the spot, welt or redness of their skin and fill out a short medical questionnaire. Thanks to Artificial Intelligence, the tool objectively communicates to the doctor the type of pathology, the patient's condition and the changes in the lesion. Putting the patient in the foreground, much more informed and sure of his illness.

This is the beginning of the dermatology revolution, a new generation of dermatologists, like Dr. Ricardo Ruiz Rodriguez, medical director of the CDI clinic. Professionals like them are looking to take advantage of the opportunities they have around them to continue growing as doctors and learning new techniques and tools to improve the lives of their patients, without the need to see patients on site.

A vision of the future

Global health management, during the pandemic, has proved that we are still lacking in resources in terms of medical care.

Cancelled medical tests, postponed consultations, treatments without follow-up... Many patients have had limited access to the health system because resources had to be used to tackle an unprecedented health crisis. Thousands of patients with chronic diseases had to reduce or even cease their treatment because they had no place in medical centers. A very problematic situation for skin diseases such as melanoma, since a delay in the follow-up of the pathology reduces considerably the life expectancy of the patient.

This is why digital telemedicine platforms are here to stay. Specifically, Legit.Health Artificial Intelligence ensures quality medical care, providing specialized follow-up to those patients who need to have their disease under control.

Equipped with machine-learning algorithms, Legit.Health software provides dermatologists with the perfect tool for their consultations, offering them a vision of the future, with many tools and mechanisms to take their practice to another level. With reliable results of up to 83% in skin diseases such as dermatitis and 94% in melanoma.

By simply analyzing images taken through any conventional smartphone, Legit.Health algorithms are capable of automatically filling in the scoring systems of up to 232 skin diseases. Such as UAS7, PASI, SCORAD, BSA or DLQI among many others. This greatly speeds up the work of professionals, who only have to worry about offering an evaluation to their patients in the form of an easy and simple diagnosis.

The future of healthcare also demands that patients take a more active role in caring for their own illness. Using tools that they can integrate into their everyday life. Legit.Health achieves greater patient empowerment in a systematic way that allows them to assess advances in their treatments and help doctors to document the process of their disease. Patients can report their pathologies just when they need it, and algorithms ensure that the doctor gets the right information, in the right way, and at the right time.